
Data-Intensive Distributed Computing

Part 7: Mutable State (2/2)

CS 431/631 451/651 (Fall 2019)

Ali Abedi

November 14, 2019

1

Motivating Scenarios

Money shouldn’t be created or destroyed:
Alice transfers $100 to Bob and $50 to Carol

The total amount of money after the transfer should be the same

Phantom shopping cart:
Bob removes an item from his shopping cart…

Item still remains in the shopping cart
Bob refreshes the page a couple of times… item finally gone

2

Motivating Scenarios

People you don’t want seeing your pictures:
Alice removes mom from list of people who can view photos

Alice posts embarrassing pictures from Spring Break
Can mom see Alice’s photo?

Why am I still getting messages?
Bob unsubscribes from mailing list and receives confirmation

Message sent to mailing list right after unsubscribe
Does Bob receive the message?

3

Consistency

Ali, $1,200

Ali, $1,200

Ali, $1,200

Ali, $1,200

Ali, $1,200

Ali, $1,200

read (“Ali”)

All nodes should see the same data at the same time

4

Availability

Ali, $1,200

Ali, $1,200

Ali, $1,200

Ali, $1,200

Ali, $1,200

Ali, $1,200

Node failures do not prevent survivors from continuing to operate

5

X

Partitioning-tolerance
The system continues to operate despite network partitions

X
6

CAP Theorem

• Consistency:
• All nodes should see the same data at the same time

• Availability:
• Node failures do not prevent survivors from continuing to operate

• Partition-tolerance:
• The system continues to operate despite network partitions

• A distributed system can satisfy any two of these guarantees at the
same time but not all three

7

CAP Theorem

C A

P

X

… pick two

8

CAP Theorem

• This suggests there are three kinds of distributed systems:

• CP: Big Table and Hbase

• AP: DNS

• CA → Impossible in distributed systems

9

10

CAP Theorem: Proof

• A simple proof using two nodes:

A B

11

CAP Theorem: Proof

• A simple proof using two nodes:

A B

Not Consistent!

Respond to client
12

CAP Theorem: Proof

• A simple proof using two nodes:

A B

Not Available!

Wait to be updated
13

CAP Theorem: Proof

• A simple proof using two nodes:

A B

Not Partition
Tolerant!

A gets updated from B
14

Types of Consistency
• Strong Consistency

• After the update completes, any subsequent access will return the
same updated value.

15

Coordinator

subordinates

Okay everyone,
PREPARE! YES

YES

YES

Good.
COMMIT!

ACK!

ACK!

ACK!

DONE!

2 Phase Commit: Sketch

16

Coordinator

subordinates

Okay everyone,
PREPARE! YES

YES

NO

ABORT!

2 Phase Commit: Sketch

17

2PC: Assumptions and Limitations

Assumptions:
Persistent storage and write-ahead log at every node

WAL is never permanently lost

Limitations:
It’s blocking and slow

What if the coordinator dies?

18

Distributed Consensus
More general problem: addresses replication and partitioning

Time

… Paxos

Hi everyone,
let’s change

the value of x.
Hi everyone,

let’s execute a
transaction t.

19

Types of Consistency

• Strong Consistency
• After the update completes, any subsequent access will return the same

updated value.

• Weak Consistency
• It is not guaranteed that subsequent accesses will return the updated value.

• Eventual Consistency
• Specific form of weak consistency

• It is guaranteed that if no new updates are made to object, eventually all
accesses will return the last updated value (e.g., propagate updates to
replicas in a lazy fashion)

20

Eventual Consistency
- An ATM Example
• In design of automated teller machine (ATM):

• Strong consistency appear to be a nature choice

• However, in practice, A beats C

• Higher availability means higher revenue

• ATM will allow you to withdraw money even if the machine is partitioned
from the network

• However, it puts a limit on the amount of withdraw (e.g., $200)

• The bank might also charge you a fee when a overdraft happens

21

Eventual Consistency
- A Facebook Example
• Bob finds an interesting story and shares with Alice by posting on her

Facebook wall

• Bob asks Alice to check it out

• Alice logs in her account, checks her Facebook wall but finds:

- Nothing is there!

22

Eventual Consistency
- A Facebook Example
• Bob tells Alice to wait a bit and check out later

• Alice waits for a minute or so and checks back:

- She finds the story Bob shared with her!

23

Eventual Consistency
- A Facebook Example
• Reason: it is possible because Facebook uses an eventual consistent

model

• Why Facebook chooses eventual consistent model over the strong
consistent one?
• Facebook has more than 1 billion active users

• It is non-trivial to efficiently and reliably store the huge amount of data
generated at any given time

• Eventual consistent model offers the option to reduce the load and improve
availability

24

Source: www.facebook.com/note.php?note_id=23844338919

MySQL

memcached

Read path:
Look in memcached
Look in MySQL
Populate in memcached

Write path:
Write in MySQL
Remove in memcached

Subsequent read:
Look in MySQL
Populate in memcached

Facebook Architecture

25

1. User updates first name from “Jason” to “Monkey”.

2. Write “Monkey” in master DB in CA, delete memcached entry in CA and VA.

3. Someone goes to profile in Virginia, read VA replica DB, get “Jason”.

4. Update VA memcache with first name as “Jason”.

5. Replication catches up. “Jason” stuck in memcached until another write!

Source: www.facebook.com/note.php?note_id=23844338919

MySQL

memcached

California

MySQL

memcached

Virginia

Replication lag

Facebook Architecture: Multi-DC

26

Source: www.facebook.com/note.php?note_id=23844338919

= stream of SQL statements

Solution: Piggyback on replication stream, tweak SQL

REPLACE INTO profile (`first_name`) VALUES ('Monkey’)
WHERE `user_id`='jsobel' MEMCACHE_DIRTY 'jsobel:first_name'

Facebook Architecture: Multi-DC

MySQL

memcached

California

MySQL

memcached

Virginia

Replication

27

What if there are no partitions?

• Tradeoff between Consistency and Latency:

• Caused by the possibility of failure in distributed systems

– High availability -> replicate data -> consistency problem

• Basic idea:

– Availability and latency are arguably the same thing: unavailable ->
extreme high latency

– Achieving different levels of consistency/availability takes different
amount of time

28

CAP -> PACELC

• A more complete description of the space of potential
tradeoffs for distributed system:

– If there is a partition (P), how does the system trade off availability
and consistency (A and C); else (E), when the system is running
normally in the absence of partitions, how does the system trade off
latency (L) and consistency (C)?

Abadi, Daniel J. "Consistency tradeoffs in modern distributed database
system design." Computer-IEEE Computer Magazine 45.2 (2012): 37.

29

PACELC

C A C L

Partitioned Normal

30

Examples
• PA/EL Systems: Give up both Cs for availability and lower

latency

– Dynamo, Cassandra, Riak

• PC/EC Systems: Refuse to give up consistency and pay
the cost of availability and latency

– BigTable, Hbase, VoltDB/H-Store

• PA/EC Systems: Give up consistency when a partition
happens and keep consistency in normal operations

– MongoDB

• PC/EL System: Keep consistency if a partition occurs but
gives up consistency for latency in normal operations

– Yahoo! PNUTS
31

