

Data-Intensive Distributed Computing

CS 431/631 451/651 (Fall 2019)

Part 8: Analyzing Graphs, Redux (1/2) November 19, 2019

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Characteristics of Graph Algorithms

Parallel graph traversals

Local computations Message passing along graph edges

Iterations

Even faster?

Big Data Processing in a Nutshell

Replicate

Reduce cross-partition communication

Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization Web pages: lexicographic sort of domain-reversed URLs

How much difference does it make?

PageRank over webgraph (40m vertices, 1.4b edges)

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization Web pages: lexicographic sort of domain-reversed URLs Social networks: sort by demographic characteristics

Country Structure in Facebook

Analysis of 721 million active users (May 2011)

54 countries w/ >1m active users, >50% penetration

Ugander et al. (2011) The Anatomy of the Facebook Social Graph.

Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization Web pages: lexicographic sort of domain-reversed URLs Social networks: sort by demographic characteristics

But what about graphs in general?

Source: http://www.flickr.com/photos/fusedforces/4324320625/

Big Data Processing in a Nutshell

Partition

Replicate

Reduce cross-partition communication

Partition

Partition

What's the fundamental issue?

Partition

State-of-the-Art Distributed Graph Algorithms

Graph Processing Frameworks

Graph Processing Frameworks

- Pregel
 - Google
- •Apache Giraph
 - Based on Pregel
 - On Hadoop

•Spark GraphX

What is Apache Giraph

• Giraph performs iterative calculation on top of an existing Hadoop cluster

Bulk-Synchronous Parallel (BSP) Programming Model

Vertex-centric model

Vertex Centric Programming

Vertex Centric Programming Model

- Logic written from perspective on a single vertex.
- Executed on all vertices.
- Vertices know about
 - Their own value(s)
 - Their outgoing edges

"Often *expensive* and should be *used as sparingly* as possible"

Vertex State Machine

- In superstep 0, every vertex is in the active state.
- A vertex deactivates itself by voting to halt.
- It can be reactivated by receiving an (external) message.
- Algorithm termination is based on every vertex voting to halt.

Finding Largest Value in a Graph

Advantages

- Makes distributed programming easy
 - ► No locks, semaphores, race conditions
 - Separates computing from communication phase
- Vertex-level parallelization
 - Bulk message passing for efficiency
- Stateful (in-memory)
 - Only messages & checkpoints hit disk

Giraph Architecture

Master – Application coordinator Synchronizes supersteps Assigns partitions to workers before superstep begins

Workers – Computation & messaging

Handle I/O – reading and writing the graph Computation/messaging of assigned partitions

ZooKeeper

Maintains global application state

Lifecycle of a Pregel Program

Applications

Shortest path

Example compute() method

```
public void compute(Iterable<DoubleWritable> messages) {
 double minDist = Double.MAX_VALUE;
 for (DoubleWritable message : messages) {
   minDist = Math.min(minDist, message.get());
 3
 if (minDist < getValue().get()) {</pre>
   setValue(new DoubleWritable(minDist));
   for (Edge<LongWritable, FloatWritable> edge : getEdges()) {
     double distance = minDist + edge.getValue().get();
     sendMessage(edge.getTargetVertexId(), new DoubleWritable(distance));
   }
 }
 voteToHalt();
```


Finding the Max

```
public class MaxComputation extends BasicComputation<IntWritable, IntWritable,
  NullWritable, IntWritable> {
@Override
public void compute(Vertex<IntWritable, IntWritable, NullWritable> vertex,
     Iterable<IntWritable> messages) throws IOException
 Ł
  boolean changed = false;
   for (IntWritable message : messages) {
     if (vertex.getValue().get() < message.get()) {</pre>
       vertex.setValue(message);
       changed = true;
  if (getSuperstep() == 0 || changed) {
     sendMessageToAllEdges(vertex, vertex.getValue());
   vertex.voteToHalt();
```

Execution Trace

Time