

Data-Intensive Distributed Computing

CS 431/631 451/651 (Fall 2019)

Part 8: Analyzing Graphs, Redux (2/2) November 21, 2019

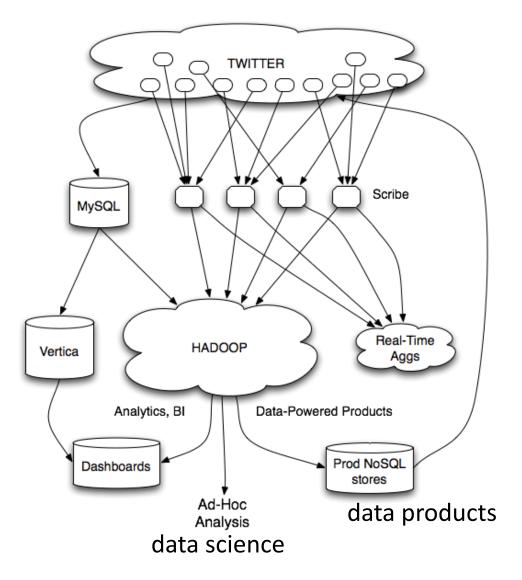
Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451

Theme for Today:

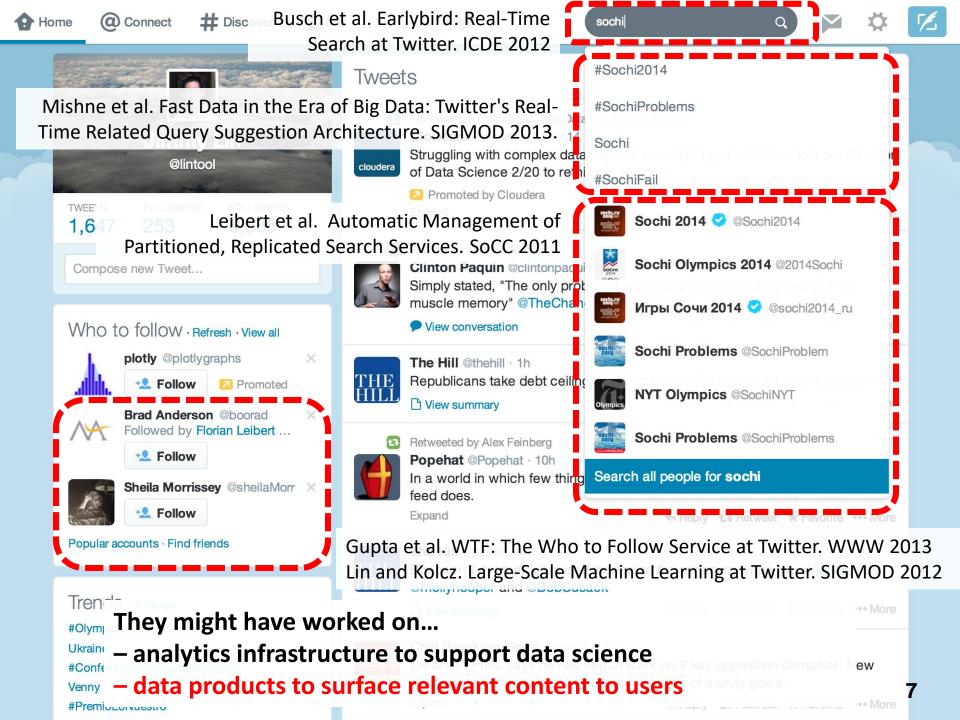
How things work in the real world (forget everything you've been told...)
(these are the mostly true events of Jimmy Lin's Twitter tenure)

What exactly might a data scientist do at Twitter?



They might have worked on...

- analytics infrastructure to support data science
- data products to surface relevant content to users



circa ~2010

~150 people total ~60 Hadoop nodes ~6 people use analytics stack daily

circa ~2012

~1400 people total

10s of Ks of Hadoop nodes, multiple DCs

10s of PBs total Hadoop DW capacity

~100 TB ingest daily

dozens of teams use Hadoop daily

10s of Ks of Hadoop jobs daily

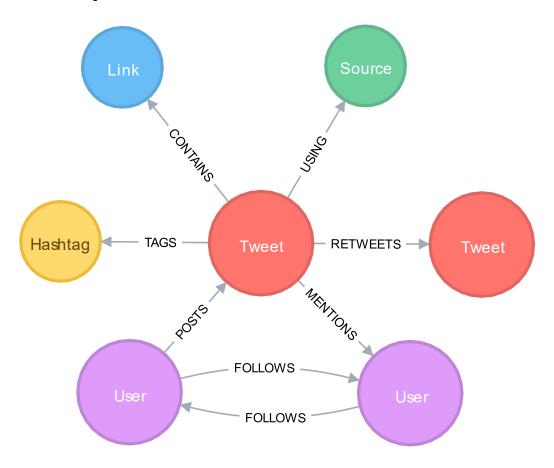
(\forall \text{whom to of 6dd bow)})



#numbers

(Second half of 2012)

Graphs are core to Twitter

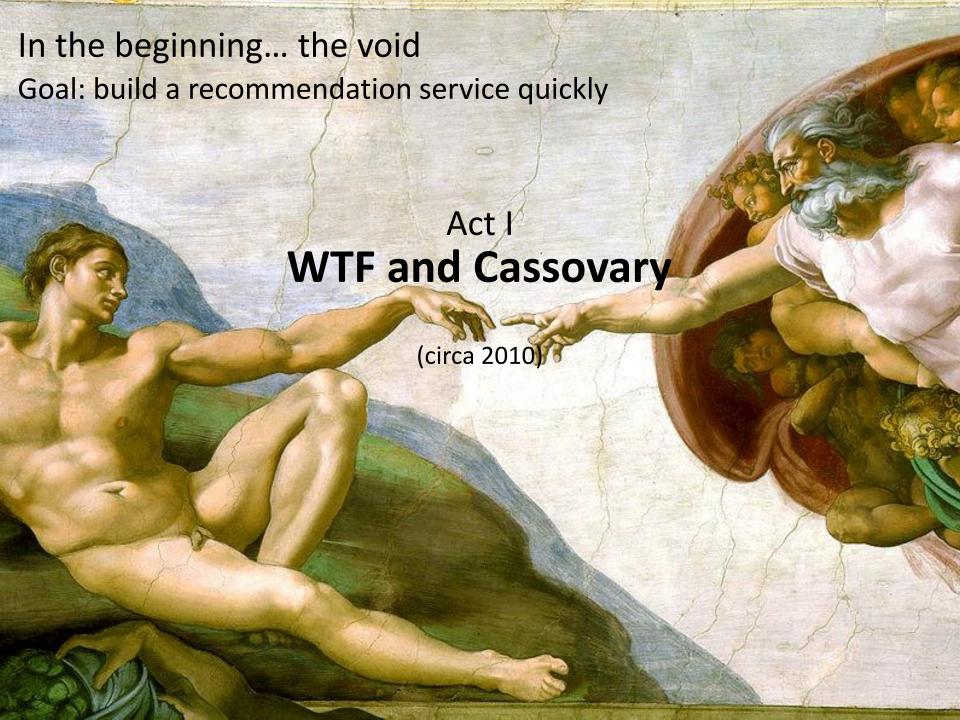


Graph-based recommendation systems Why? Increase engagement!

In the beginning... the void

Act | WTF and Cassovary

(circa 2010)

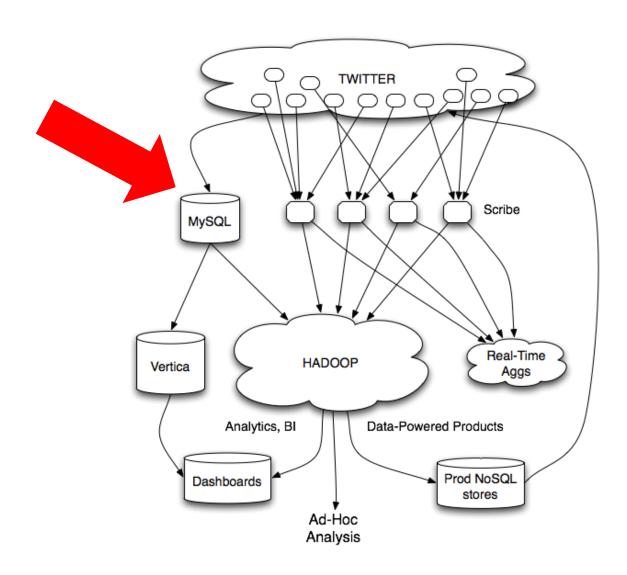


flockDB

(graph database)

Simple graph operations
Set intersection operations

Not appropriate for graph algorithms!



Okay, let's use MapReduce! But MapReduce sucks for graphs!

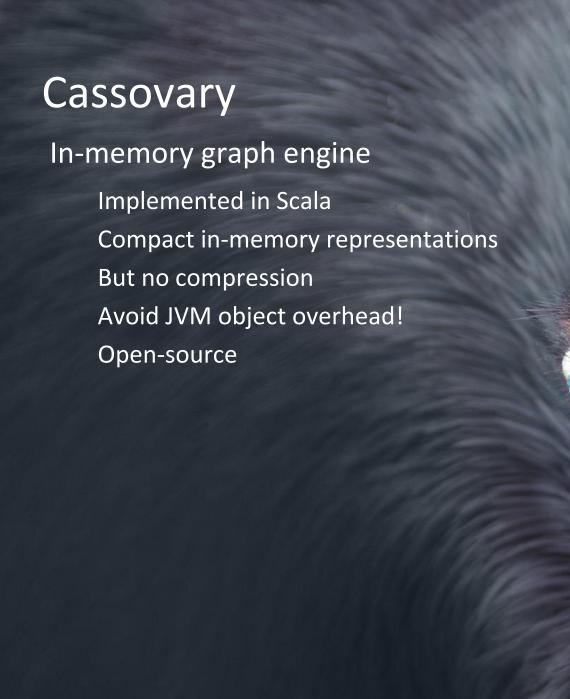
MapReduce sucks for graph algorithms... Let's build our own system!

Key design decision:

Keep entire graph in memory... on a single machine!

Suppose: 10×10^9 edges (src, dest) pairs: ~80 GB

18 × 8 GB DIMMS = 144 GB 18 × 16 GB DIMMS = 288 GB 12 × 16 GB DIMMS = 192 GB 12 × 32 GB DIMMS = 384 GB



Source: Wikipedia (Cassowary)

PageRank

"Semi-streaming" algorithm

Keep vertex state in memory, stream over edges
Each pass = one PageRank iteration
Bottlenecked by memory bandwidth

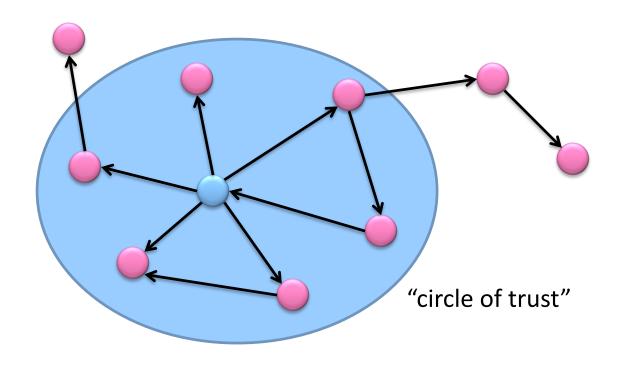
Convergence?

Don't run from scratch... use previous values
A few passes are sufficient

"Circle of Trust"

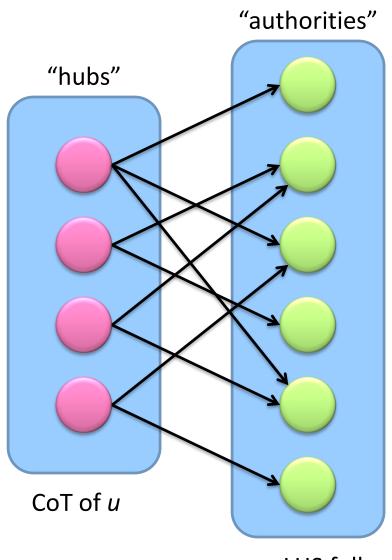
Ordered set of important neighbors for a user

Result of egocentric random walk: Personalized PageRank! Computed online based on various input parameters



One of the features used in search

SALSA for Recommendations

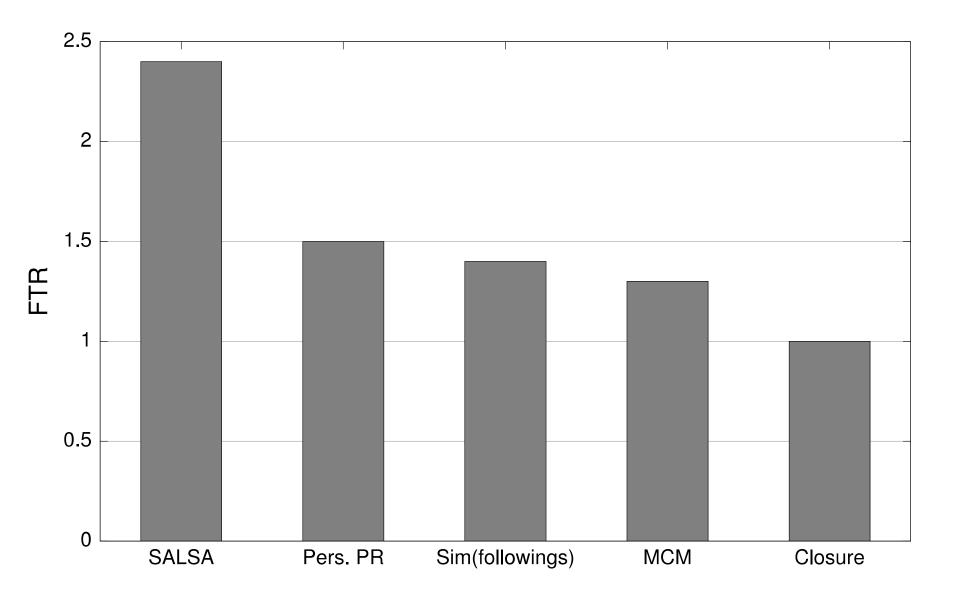


hubs scores:

similarity scores to u

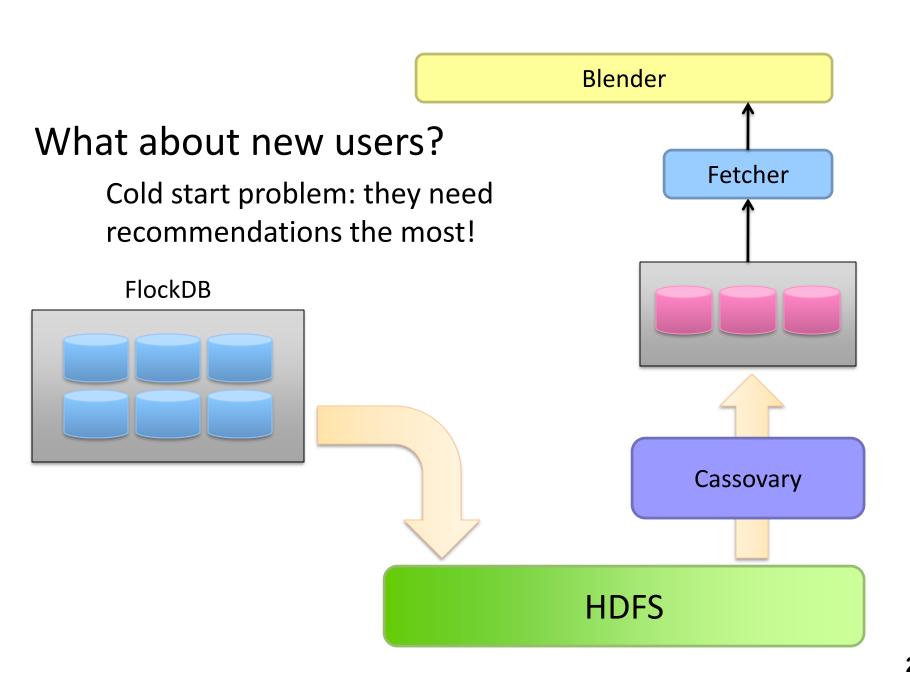
authority scores:

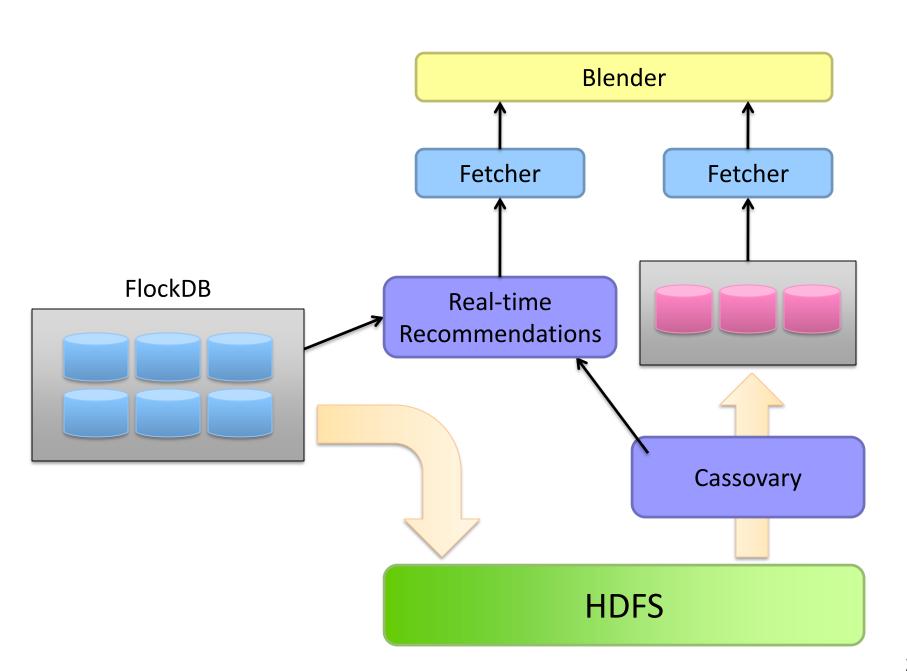
recommendation scores for u



Goel, Lin, Sharma, Wang, and Zadeh. WTF: The Who to Follow Service at Twitter. WWW 2013







Spring 2010: no WTF seriously, WTF?

Summer 2010: WTF launched



Whaaaaaa?

Cassovary was a stopgap!

Hadoop provides:

Richer graph structure
Simplified production infrastructure
Scaling and fault-tolerance "for free"

Right choice at the time!

Wait, didn't you say MapReduce sucks?

What exactly is the issue?

Random walks on egocentric 2-hop neighborhood Naïve approach: self-joins to materialize, then run algorithm

The shuffle is what kills you!

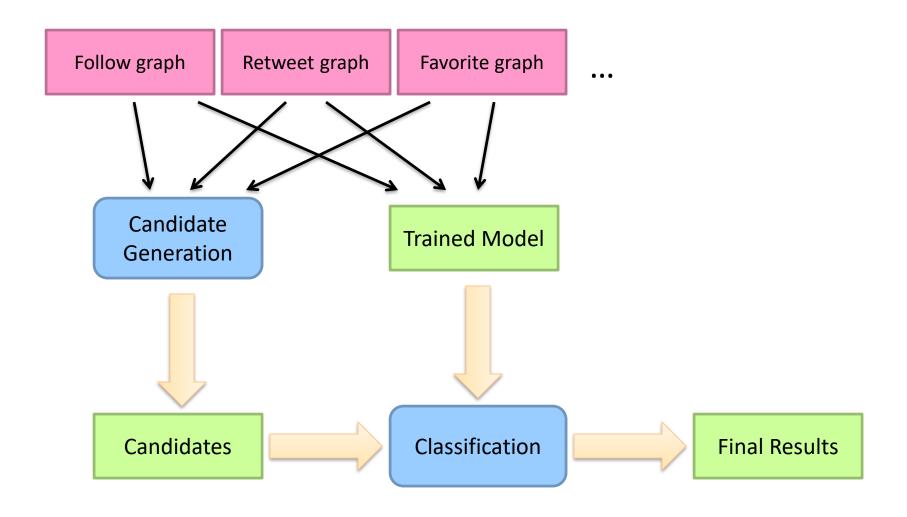
Graph algorithms in MapReduce

Tackle the shuffling problem!

Key insights:

Batch and "stich together" partial random walks* Clever sampling to avoid full materialization

Throw in ML while we're at it...



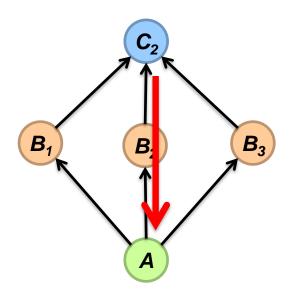
Observation: fresh recommendations get better engagement Logical conclusion: generate recommendations in real time!

From batch to real-time recommendations:

Recommendations based on recent activity "Trending in your network"

Inverts the WTF problem:

For this user, what recommendations to generate?
Given this new edge, which user to make recommendations to?



Why does this work?

A follows B's because they're interesting
B's following C's because "something's happening"
(generalizes to any activity)

Scale of the Problem

O(10⁸) vertices, O(10¹⁰) edges Designed for O(10⁴) events per second

Naïve solutions:

Poll each vertex periodically Materialize everyone's two-hop neighborhood, intersect

Production solution:

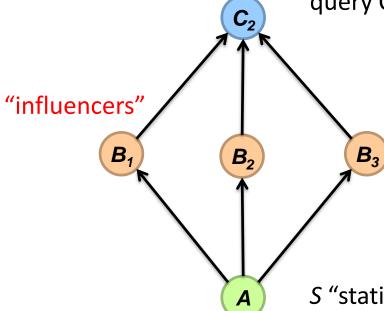
Idea #1: Convert problem into adjacency list intersection Idea #2: Partition graph to eliminate non-local intersections

Single Node Solution

Who we're recommending

D "dynamic" structure: stores inverted adjacency lists

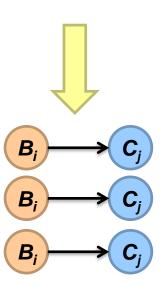
query C, return all B's that link to it



Who we're making the recommendations to

S "static" structure: stores inverted adjacency lists

query B, return all A's that link to it

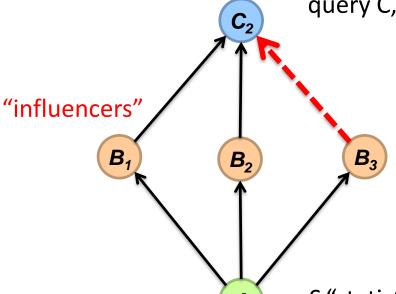


Algorithm

Who we're recommending

D "dynamic" structure: stores inverted adjacency lists

query C, return all B's that link to it



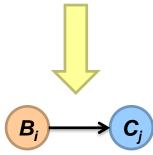
- 1. Receive B_3 to C_2
- 2. Query D for C_2 , get B_1 , B_2 , B_3
- 3. For each B_1 , B_2 , B_3 , query S
- 4. Intersect lists to compute A's

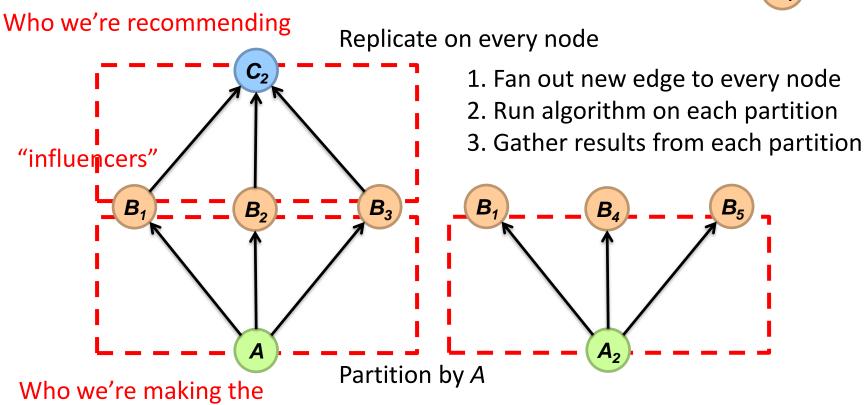
Who we're making the recommendations to

S "static" structure: stores inverted adjacency lists

query B, return all A's that link to it

Distributed Solution





Idea #2: Partition graph to eliminate non-local intersections

recommendations to

Production Status

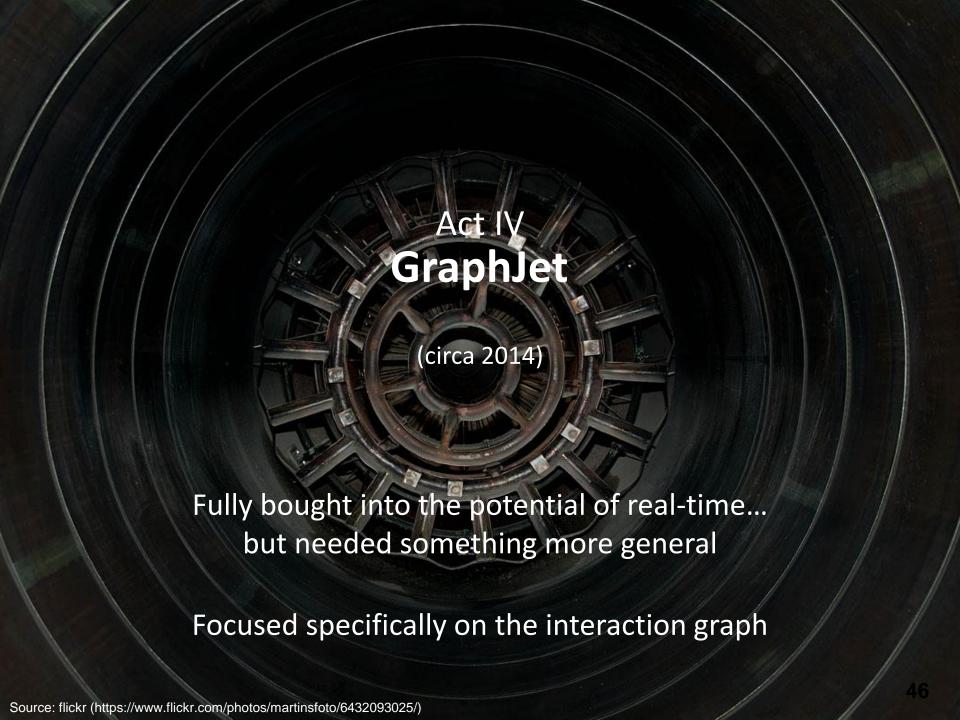
Launched September 2013

Usage Statistics (Circa 2014)

Push recommendations to Twitter mobile users Billions of raw candidates, millions of push notifications daily

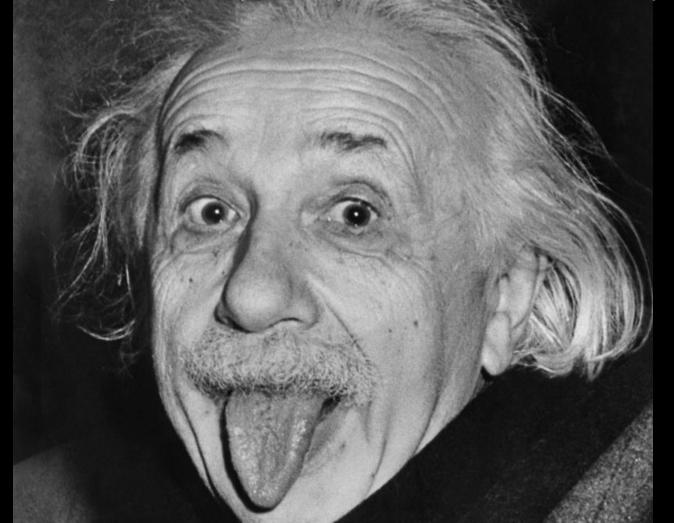
Performance

End-to-end latency (from edge creation to delivery): median 7s, p99 15s



Takeaway lesson #01:

Make things as simple as possible, but not simpler.



With lots of data, algorithms don't really matter that much Why a complex architecture when a simple one suffices?

