
Data-Intensive Distributed Computing

Part 1: MapReduce Algorithm Design
Hadoop API

451/651

Ali Abedi

MapReduce API

Mapper<Kin,Vin,Kout,Vout>

Called once at the start of the task
void setup(Mapper.Context context)

Called once for each key/value pair in the input split
void map(Kin key, Vin value, Mapper.Context context)

Called once at the end of the task
void cleanup(Mapper.Context context)

Reducer<Kin,Vin,Kout,Vout>/Combiner<Kin,Vin,Kout,Vout>

Called once at the start of the task
void setup(Reducer.Context context)

Called once for each key
void reduce(Kin key, Iterable<Vin> values, Reducer.Context context)

Called once at the end of the task
void cleanup(Reducer.Context context)

MapReduce API

Partitioner<K, V>

Returns the partition number given total number of partitions
int getPartition(K key, V value, int numPartitions)

Writable Defines a de/serialization protocol.
Every data type in Hadoop is a Writable.

WritableComprable Defines a sort order.
All keys must be of this type (but not values).

IntWritable
LongWritable
Text
…

Concrete classes for different data types.
Note that these are container objects.

SequenceFile Binary-encoded sequence of key/value pairs.

Data Types in Hadoop: Keys and Values

private static final class MyMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable ONE = new IntWritable(1);
private final static Text WORD = new Text();

@Override
public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {
for (String word : Tokenizer.tokenize(value.toString())) {
WORD.set(word);
context.write(WORD, ONE);

}
}

}

Word Count Mapper

private static final class MyReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {

private final static IntWritable SUM = new IntWritable();

@Override
public void reduce(Text key, Iterable<IntWritable> values,

Context context) throws IOException, InterruptedException {
Iterator<IntWritable> iter = values.iterator();
int sum = 0;
while (iter.hasNext()) {
sum += iter.next().get();

}
SUM.set(sum);
context.write(key, SUM);

}
}

Word Count Reducer

Getting Data to Mappers and Reducers

Configuration parameters
Pass in via Job configuration object

“Side data”
DistributedCache

Mappers/Reducers can read from HDFS in setup method

Complex Data Types in Hadoop

The easiest way:
Encode it as Text, e.g., (a, b) = “a:b”

Use regular expressions to parse and extract data
Works, but janky

The hard way:
Define a custom implementation of Writable(Comprable)

Must implement: readFields, write, (compareTo)
Computationally efficient, but slow for rapid prototyping
Implement WritableComparator hook for performance

How do you implement complex data types?

Somewhere in the middle:
Bespin offers various building blocks

Input and Output

InputFormat
TextInputFormat

KeyValueTextInputFormat
SequenceFileInputFormat

…

OutputFormat
TextOutputFormat

SequenceFileOutputFormat
…

InputSplit

Source: redrawn from a slide by Cloduera, cc-licensed

InputSplit InputSplit

Input File Input File

InputSplit InputSplit

RecordReader RecordReader RecordReader RecordReader RecordReader

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

In
p

u
tF

o
rm

a
t

… …

InputSplit InputSplit InputSplit

Client

Records

Mapper

RecordReader

Mapper

RecordReader

Mapper

RecordReader

Where’s the data actually coming from?

Source: redrawn from a slide by Cloduera, cc-licensed

Reducer Reducer Reducer

Output File

RecordWriter

O
u

tp
u

tF
o

rm
a

t

Output File

RecordWriter

Output File

RecordWriter

Hadoop Job

Represents a packaged Hadoop job for submission to cluster
Need to specify input and output paths

Need to specify input and output formats
Need to specify mapper, reducer, combiner, partitioner classes

Need to specify intermediate/final key/value classes
Need to specify number of reducers (but not mappers, why?)

Don’t depend on defaults!

Hadoop Cluster
You

Submit node
(datasci)

Getting data in?
Writing code?
Getting data out?

Hadoop Workflow

Where’s the actual
data stored?

Debugging Hadoop

First, take a deep breath
Start small, start locally

Build incrementally

Hadoop Debugging Strategies

Good ol’ System.out.println
Learn to use the webapp to access logs

Logging preferred over System.out.println
Be careful how much you log!

Fail on success
Throw RuntimeExceptions and capture state

Use Hadoop as the “glue”
Implement core functionality outside mappers and reducers

Independently test (e.g., unit testing)
Compose (tested) components in mappers and reducers

