
1

Data-Intensive Distributed Computing

Part 1: MapReduce Algorithm Design (1/3)

431/451/631/651 (Fall 2021)

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451/
1

2

2

3

Abstraction

Cluster of computers

Storage/computing

Agenda for today

3

4

Abstraction

Cluster of computers

Storage/computing

4

5

Data-intensive
distributed computing

How can we process a large file on a distributed system?

MapReduce

5

6

10 TB

File.txt

How many times do we see
“Waterloo” in this file?

Sequential read: 100 MB/s

10 𝑇𝐵

100 𝑀𝐵/𝑠
= 28 ℎ𝑜𝑢𝑟𝑠

It takes 28 hours just to read the file
(ignoring computation)

6

Just a single machine

Can we speed up this process by using more resources?
How can we solve this problem using 20 servers instead?
For simplicity assume that all 20 servers have a copy of the 10 TB file.

7

. . .

S1 S2 S3 S19 S20

10 TB

File.txt

How many times do we see
“Waterloo” in this file?

With 20x more resources, can we achieve 20x speed up?
7

This is the logical view of how MapReduce works in our simple count Waterloo
example.
Each of the 20 servers are responsible for a chunk of the 10TB file. Each server counts
the number of times Waterloo appears in the text assigned to it.
Then, all servers send these partial results to another server (can be one of the 20
servers). This server adds up all of the partial results to find the total number of times
Waterloo appears in the 10TB file.
Physical view details such as how each server gets the chunk it should process, and
how intermediate results are moved to the reducer should be ignored for now.

8

. . .

S1 S2 S3 S19 S20

File.txt

5 2 8 0 21

+
36

M
ap

R
ed

u
ce

Count
“Waterloo”

8

MapReduce is essentially
distributed divide and conquer …

9

9

In our simple example, one reducer was enough because it only had to add up some
(i.e., number of mappers) numbers.
But in general we might have a ton of partial results from the map phase. Let’s see
another example.

10

. . .

S1 S2 S3 S19 S20

File.txt

5 2 8 0 21

+
36

M
ap

R
ed

u
ce

Count
“Waterloo”

What if we have a lot of intermediate results?
Having only one reducer can be a bottleneck.

10

11

. . .

S1 S2 S3 S19 S20

10 TB

File.txt

How many times do we see each
word in this file?

Word count is the “hello world” of MapReduce
11

12

The expected output is …

Word Count

Waterloo 36

Kitchener 27

City 512

Is 12450

The 16700

University 123

…

For each word in the input file, count how many times it appears in the file.

12

All mappers send list of (key, value) pairs to the reducer, where the key is word and
value is its count.
The reducer adds up all intermediate results. But it can now be a bottleneck.

Can we have multiple reducers like mappers?

13

. . .

S1 S2 S3 S19 S20

File.txt

(waterloo, 5)
(kitchener, 2)

(city,10)
…

… … … (university, 4)
(waterloo, 21)

(city, 4)
…

+
(waterloo, 36)

(city, 500)
…

M
ap

R
ed

u
ce

13

14

. . .

S1 S2 S3 S19 S20

(waterloo, 5)
(kitchener, 2)

(city,10)
…

… … … (university, 4)
(waterloo, 21)

(city, 4)
…

M
ap

R
ed

u
ce

What intermediate result should be moved to which reducer?14

15

Sending partial results to the right reducer

• Each word should be processed by one reducer, otherwise we will
have partial results again!
• E.g., all (Waterloo, *) should be processed by the same reducer

• So we partition intermediate results by key

How can mapper x know which reducer mapper y will sent key k?

15

Each mapper can independently hash any key like k to find out which reducer it
should go to.

16

Hash functions to rescue …

• Mapper x and y can send key k to the same reducer by hashing k

• Mapper x: Hash(k) = i → I will send k to reducer i

• Mapper y: Hash(k) = i → I will send k to reducer i

• E.g., Hash(“waterloo”) = 2

16

17

. . .

S1 S2 S3 S19 S20

(waterloo, 5)
(kitchener, 2)

(city,10)
…

… … … (university, 4)
(waterloo, 21)

(city, 4)
…

M
ap

R
ed

u
ce

(waterloo, 36)
(university, 500)

…

(city, 1800)
(kitchener, 500)

…
17

The process of moving intermediate results from mappers to reducers called shuffling

18

. . .

S1 S2 S3 S19 S20

(waterloo, 5)
(kitchener, 2)

(city,10)
…

… … … (university, 4)
(waterloo, 21)

(city, 4)
…

M
ap

R
ed

u
ce

(waterloo, 36)
(university, 500)

…

(city, 1800)
(kitchener, 500)

…

Shuffling

18

19

There is a problem we ignored …

S1

(waterloo, 5)
(kitchener, 2)

(city,10)
…

We might have memory overflow on mappers!

What if this list is too long?

19

Unfortunately if we want to accumulate all stats in a dictionary, it may need too much
memory. Although in the case of English Text the size of the dictionary is limited to
the number of English words, no assumption can be made for an arbitrary input.

20

There is a problem we ignored …

S1

Waterloo is a city in Ontario,
Canada. It is the smallest of
three cities in the Regional
Municipality of Waterloo …

We need a data structure like a dictionary

to count all words, but how much memory

do we need?

Solution: Do not accumulate!

Buffering is dangerous

20

For every word we read emit (word, 1) to the reducer! This way the memory we need
is almost 0.

21

S1

(waterloo, 5)
(kitchener, 2)

(city,10)
…

Waterloo is a city in Ontario,
Canada. It is the smallest of
three cities in the Regional
Municipality of Waterloo …

S1

(waterloo, 1)
(is, 1)

…
(waterloo,1)

…

Waterloo is a city in Ontario,
Canada. It is the smallest of
three cities in the Regional
Municipality of Waterloo …

21

We need no change in the reduce phase. Reducers should still add all numbers for
each key.

22

. . .

S1 S2 S3 S19 S20

(waterloo, 1)
(is, 1)
(a,1)

(city,1)
…

… … … (university, 1)
(of, 1)

(waterloo, 1)
…

M
ap

R
ed

u
ce

(waterloo, 36)
(university, 500)

…

(city, 1800)
(kitchener, 500)

…
22

Mapper: simply process line by line. For every line emit (word, 1).
Reducer: for every word, count all of the 1s.

23

def map(key: Long, value: String) = {
for (word <- tokenize(value)) {

emit(word, 1)
}

}

def reduce(key: String, values: Iterable[Int]) = {
for (value <- values) {

sum += value
}
emit(key, sum)

}

MapReduce “word count” pseudo-code

Apache Hadoop is the most famous open-source implementation of MapReduce

24

24

25

MapReduce Implementations

Google has a proprietary implementation in C++

Bindings in Java, Python

Hadoop provides an open-source implementation in Java

Development begun by Yahoo, later an Apache project
Used in production at Facebook, Twitter, LinkedIn, Netflix, …

Large and expanding software ecosystem
Potential point of confusion: Hadoop is more than MapReduce today

Lots of custom research implementations

25

26

mapmap map map

group values by key

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

Input

Output

27

MapReduce

The execution framework handles everything else…
What’s “everything else”?

Programmer specifies two functions:
map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

28

MapReduce “Runtime”

Handles scheduling
Assigns workers to map and reduce tasks

Handles “data distribution”
Moves processes to data

Handles synchronization
Groups intermediate data

Handles errors and faults
Detects worker failures and restarts

Everything happens on top of a distributed FS

29

map

Input file

The word count example …

“Waterloo is a small city.”

(waterloo,1)
(is, 1)
(a, 1)
…

reduce

1 Line of text

The map function
is called for every
line

1 key

(waterloo,{1,1,1,1,1})
(city, {1,1})
(university, {1,1,1})
…

(waterloo,{1,1,1,1,1})

(waterloo, 5)

The reduce function
is called for every
key

29

30

MapReduce

Programmer specifies two functions:
map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

The execution framework handles everything else…
Not quite…

31

mapmap map map

group values by key

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

What’s the most complex and slowest operation here?

(waterloo, 1)

The slowest operation is shuffling intermediate results from mappers to reducers

32

Programmer specifies two functions:
map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

MapReduce

partition (k', p) → 0 ... p-1

Often a simple hash of the key, e.g., hash(k') mod n

Divides up key space for parallel reduce operations

combine (k2, List[v2]) → List[(k2, v2)]

Mini-reducers that run in memory after the map phase

Used as an optimization to reduce network traffic

✗

33

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

group values by key

reduce reduce reduce

a 1 5 b 2 7

r1 s1 r2 s2 r3 s3

c 2 3 6 8

* Important detail: reducers
process keys in sorted order

Partition is not a component that the data goes through, but rather a policy that
determines to which reducer the output of mappers should go.

34

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

group values by key

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3 * Important detail: reducers
process keys in sorted order

Logical View

35

Physical view
What happens behind the scenes

35

36

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

worker

Master

User

Program

output

file 0

output

file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input

files

Map

phase

Intermediate files

(on local disk)

Reduce

phase

Output

files

Adapted from (Dean and Ghemawat, OSDI 2004)

Physical View

Map side:
Map outputs are buffered in memory in a circular buffer
When buffer reaches threshold, contents are “spilled” to disk
Spills are merged into a single, partitioned file (sorted within each partition)
Combiner runs during the merges

First, map outputs are copied over to reducer machine
“Sort” is a multi-pass merge of map outputs (happens in memory and on disk)
Combiner runs during the merges
Final merge pass goes directly into reducer

37

Mapper

Reducer

other mappers

other reducers

circular
buffer

(in memory)

spills (on disk)

merged spills
(on disk)

intermediate files
(on disk)

Combiner

Combiner

Distributed Group By in MapReduce

Barrier between map and reduce phases
But runtime can begin copying intermediate data earlier

MapReduce hides the complexities of the physical view so that the programmer can
focus on “what” rather than “how” it’s done

38

Abstraction

Cluster of computers

Storage/computing

MapReduce

38

With this approach, the datacenter with all of its complexities is like a computer.

39

The datacenter is the computer!

