
1

Data-Intensive Distributed Computing

Part 2: MapReduce Algorithm Design (2/3)

431/451/631/651 (Fall 2021)

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451/
1



Although we argued about having an abstraction layer to hide the complexities of 

underlying infrastructure, today we want to have a quick look at the architecture of 

datacenters. This will help us later to understand the performance trade offs of 

different algorithms. It also makes us appreciate these systems more ☺

2

Abstraction

Cluster of computers

Storage/computing

HDFS MapReduce blissful ignorance

unpleasant truth  

2



3

A quick review of 
data center 
architecture

3



Left: Top view of a server

Right: the two top figures are the front of the server with two storage configurations: 

1)16 2.5 inch drives 2) 8 3.5 inch drivers

Right: bottom is the back of the server. We can see network interfaces (7)

4

The anatomy of a server

4



We put multiple servers in a server rack. There is a network switch that connects 

the servers in a rack. This switch also connects the rack to other racks.

5

The anatomy of a server rack

5



Clusters of racks of servers build a data center. This is a very simplistic view of a 

data center.

6

The anatomy of a data center

6



Capacity, latency, and bandwidth for reading data change depending on where the 

data is.

The lowest latency and highest bandwidth is achieved when the data we need is on 

our local server.

We can increase capacity by utilizing other servers but at the cost of higher latency 

and lower bandwidth.

7

Storage Hierarchy

Local Machine
L1/L2/L3 cache, memory, SSD, magnetic disks

capacity, latency, bandwidth

Remote Machine
Same Rack

Remote Machine
Different Rack

Remote Machine
Different Datacenter

7



https://colin-scott.github.io/personal_website/research/interactive_latency.html

8

Latency 
numbers every 
programmer 
should know
Demo

8



https://youtu.be/XZmGGAbHqa0

9

The anatomy of a data center
Google’s data center video

9



10

Abstraction

Cluster of computers

Storage/computing

10



11

Distributed File System
How can we store a large file on a distributed system?

11



Assume that we have 20 identical networked servers each with 100 TB of disk 

space. How would you store a file on these server? This is the fundamental 

question in distributed file systems.

12

. . .

100 TB 100 TB 100 TB 100 TB 100 TB

S1 S2 S3 S19 S20

200 TB

File.txt

How do you store this file?

12



We can split the file into smaller chunks.

13

. . .

100 TB 100 TB 100 TB 100 TB 100 TB

S1 S2 S3 S19 S20

File.txt

Divide into smaller chunks

13



And assign the chunks (e.g., randomly) to the servers.

14

. . .

100 TB 100 TB 100 TB 100 TB 100 TB

S1 S2 S3 S19 S20

1

File.txt

2 3 4 5 6 7 8 Assign chunks to servers

14



We need to track where each chunk is stored so that we can retrieve the file.

15

1 → S1
2 → S3

…
8 → S19

. . .

100 TB 100 TB 100 TB 100 TB 100 TB

S1 S2 S3 S19 S20

File.txt

Keep track of the chunks

using a master server

15



If a server that contains one of the chunks fails, the files become corrupted. Since 

failure rate is high on commodity servers, we need to figure out a solution.

16

1 → S1
2 → S3

…
8 → S19

. . .

100 TB 100 TB 100 TB 100 TB 100 TB

S1 S2 S3 S19 S20

File.txt

What happens when a server fails?!

16



If each chunk is stored on multiple server, if a server fails there is a backup. The 

number of copies determines how much resilience we want. 

17

. . .

100 TB 100 TB 100 TB 100 TB 100 TB

S1 S2 S3 S19 S20

1

File.txt

2 3 4 5 6 7 8 FAULT TOLORANCE
Store each chunk on 

multiple servers

REPLICATION

17



18

From our made-up distributed 
file system to a real one

18



19

Hadoop Distributed 
File System (HDFS)

Adapted from form Erik Jonsson (UT Dallas) 19



20

Goals of HDFS

• Very Large Distributed File System
• 10K nodes, 100 million files, 10PB

• Assumes Commodity Hardware
• Files are replicated to handle hardware failure

• Detect failures and recover from them

• Optimized for Batch Processing
• Provides very high aggregate bandwidth

20



HDFS is not like a typical file system you use on Windows or Linux. It was 

specifically designed for Hadoop. It cannot perform some of the typical operations 

that other file systems can do like random write. Instead it is optimized for large 

sequential reads and append only writes. 

21

Distributed File System

• Data Coherency
• Write-once-read-many access model

• Client can only append to existing files

• Files are broken up into blocks
• Typically 64MB block size

• Each block replicated on multiple DataNodes

• Intelligent Client
• Client can find location of blocks

• Client accesses data directly from DataNode

21



Note that the namenode is relatively lightweight, it's just storing where the data is 

located on datanodes not the actual data.

May still have a redundant namenode in the background if the primary one fails

HDFS client gets data information from namenode and then interacts with 

datanodes to get that data

Note that namenode has to communicate with datanodes to ensure consistency and 

redundancy of data (e.g., if a new clone of the data needs to be created)

22

Adapted from (Ghemawat et al., SOSP 2003)

(file name, block id)

(block id, block location)

instructions to datanode

datanode state
(block id, byte range)

block data

HDFS namenode

HDFS datanode

Linux file system

…

HDFS datanode

Linux file system

…

File namespace

/foo/bar

block 3df2

Application

HDFS Client

HDFS Architecture

22



23

Functions of a NameNode

• Manages File System Namespace
• Maps a file name to a set of blocks

• Maps a block to the DataNodes where it resides

• Cluster Configuration Management

• Replication Engine for Blocks

23



24

NameNode Metadata

• Metadata in Memory
• The entire metadata is in main memory

• No demand paging of metadata

• Types of metadata
• List of files

• List of Blocks for each file

• List of DataNodes for each block

• File attributes, e.g. creation time, replication factor

• A Transaction Log
• Records file creations, file deletions etc

24



25

DataNode

• A Block Server
• Stores data in the local file system (e.g. ext3)

• Stores metadata of a block (e.g. CRC)

• Serves data and metadata to Clients

• Block Report
• Periodically sends a report of all existing blocks to the NameNode

• Facilitates Pipelining of Data
• Forwards data to other specified DataNodes

25



26

Block Placement

• Current Strategy
• One replica on local node

• Second replica on a remote rack

• Third replica on same remote rack

• Additional replicas are randomly placed

• Clients read from nearest replicas

26



27

Heartbeats

• DataNodes send hearbeat to the NameNode
• Once every 3 seconds

• NameNode uses heartbeats to detect DataNode failure

27



28

Replication Engine

• NameNode detects DataNode failures
• Chooses new DataNodes for new replicas

• Balances disk usage

• Balances communication traffic to DataNodes

28



29

HDFS Demo

29



30

Terminology differences:
GFS master = Hadoop namenode

GFS chunkservers = Hadoop datanodes

Implementation differences:
Different consistency model for file appends

Implementation language
Performance

Google File System (GFS)

30



31

31



32

Abstraction

Cluster of computers

Storage/computing

HDFS MapReduce

32



33

Hadoop Cluster Architecture

33



SAN: Storage Area Network

34

How do we get data to the workers?
Let’s consider a typical supercomputer…

Compute Nodes

SAN

34



This makes sense for compute-intensive tasks as the computations (for some chunk 

of data) are likely to take a long while even on such sophisticated hardware, so the 

communication costs are greatly outweighed by the computation costs. For data-

intensive tasks, the computations (for some chunk of data) aren’t likely to take 

nearly as long, so the computation costs are greatly outweighed by the 

communication costs. Likely to experience latency and bottleneck even with high 

speed transfer.

35

Compute-Intensive vs. Data-Intensive

Why does this make sense for compute-intensive tasks?
What’s the issue for data-intensive tasks?

Compute Nodes

SAN

35



If a server is responsible for both data storage and processing, Hadoop can do a lot 

of optimization. For example, when assigning mapreduce tasks to servers, Hadoop 

considers which servers contain what part of the file locally to minimize copy over 

network. If all of the data can be process locally where it is stored there will be no 

need to move the data.

36

What’s the solution?
Don’t move data to workers… move workers to the data!

Key idea: co-locate storage and compute
Start up worker on nodes that hold the data

36



This figure shows how computation and storage is co-located on a Hadoop cluster.

Node manager manages running tasks on a node (e.g., if we have spare resources, 

do the next job assigned to us)

Resource manager is responsible for managing available resources in the cluster

37

DataNode

Linux file system

…

Node Manager

worker node

DataNode

Linux file system

…

Node Manager

worker node

DataNode

Linux file system

…

Node Manager

worker node

NameNode Resource Manager

Putting everything together…

37



38

38


