
1

Data-Intensive Distributed Computing

Part 1: MapReduce Algorithm Design (3/3)

431/451/631/651 (Fall 2021)

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451/
1

2

We now talk more about combiner design

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

group values by key

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3 * Important detail: reducers
process keys in sorted order

2

Importance of Local Aggregation

Ideal scaling characteristics:
Twice the data, twice the running time

Twice the resources, half the running time

Why can’t we achieve this?
Synchronization requires communication

Communication kills performance

Thus… avoid communication!
Reduce intermediate data via local aggregation

Combiners can help

3

3

Combiner Design

Combiners and reducers share same method signature
Sometimes, reducers can serve as combiners

Often, not…

Remember: combiner are optional optimizations
Should not affect algorithm correctness

May be run 0, 1, or multiple times

Example: find average of integers associated with the same key

4

4

Why can’t we use reducer as combiner?

Computing the Mean: Version 1

class Mapper {
def map(key: String, value: Int) = {
emit(key, value)

}
}

class Reducer {
def reduce(key: String, values: Iterable[Int]) {
for (value <- values) {

sum += value
cnt += 1

}
emit(key, sum/cnt)

}
}

(a, 7)

(a,18)

(c, 4)

(b,1)

(c, 10)

(a, 3)

…

AVG (4, 4, 2, 2, 2) != AVG (AVG (4, 4), AVG(2, 2, 2)) = 3
5

No, because we cannot take partial averages! The math will be wrong

5

6

class Mapper {
def map(key: String, value: Int) =
emit(key, value)

}
class Combiner {

def reduce(key: String, values: Iterable[Int]) = {
for (value <- values) {

sum += value
cnt += 1

}
emit(key, (sum, cnt))

}
}
class Reducer {

def reduce(key: String, values: Iterable[Pair]) = {
for ((s, c) <- values) {

sum += s
cnt += c

}
emit(key, sum/cnt)

}
}

Why doesn’t this work?

Computing the Mean: Version 2

(a, 7)

(a,18)

(c, 4)

(b,1)

(c, 10)

(a, 3)

…

7

The input to reducer might be coming from mapper or combiner however the

output of mapper and combiner differ. This implementation assumes that

combiners always run but this is not true.

7

class Mapper {
def map(key: String, value: Int) =
emit(key, (value, 1))

}
class Combiner {

def reduce(key: String, values: Iterable[Pair]) = {
for ((s, c) <- values) {

sum += s
cnt += c

}
emit(key, (sum, cnt))

}
}
class Reducer {

def reduce(key: String, values: Iterable[Pair]) = {
for ((s, c) <- values) {

sum += s
cnt += c

}
emit(key, sum/cnt)

}
}

Computing the Mean: Version 3

8

The problem is fixed by modifying the output of mapper to match the output of

combiner.

8

Performance

V1

V3

200m integers across three char keys

~120s

~90s

Time

Baseline

+ Combiner

(a, 7)

(a,18)

(c, 4)

(b,1)

(c, 10)

(a, 3)

…

9

Using combiner significantly improves the performance.

9

In-Mapper Combiner

10

10

class Mapper {
val counts = new Map()

def map(key: Long, value: String) = {
for (word <- tokenize(value)) {
counts(word) += 1

}
}

def cleanup() = {
for ((k, v) <- counts) {
emit(k, v)

}
}

}

Key idea: preserve state across
input key-value pairs!

Word count with in-mapper combiner

11

Didn’t you say we

shouldn’t do this?!!

11

In-mapper combining

Fold the functionality of the combiner into the mapper
by preserving state across multiple map calls

Advantages
Speed

Why is this faster than actual combiners?

Disadvantages
Explicit memory management required

12

In-mapper is faster than regular combiners because it is done in memory, in

contrast with regular combining which is a disk to disk operation.

12

Computing the Mean: Version 4

class Mapper {
val sums = new Map()
val counts = new Map()

def map(key: String, value: Int) = {
sums(key) += value
counts(key) += 1

}

def cleanup() = {
for (key <- counts.keys) {
emit(key, (sums(key), counts(key)))

}
}

}

(a, 7)

(a,18)

(c, 4)

(b,1)

(c, 10)

(a, 3)

…

13

Using IMC to improve the performance of computing the mean.

13

Performance

V1

V3

200m integers across three char keys

~120s

~90s

Time

Baseline

+ Combiner

V4 ~60s+ IMC

14

14

Algorithm Design

15

15

Term co-occurrence

Term co-occurrence matrix for a text collection
M = N x N matrix (N = vocabulary size)

Mij: number of times i and j co-occur in some context
(for concreteness, let’s say context = sentence)

Why?
Distributional profiles as a way of measuring semantic distance
Semantic distance useful for many language processing tasks

Applications in lots of other domains

16

16

How many times two words co-occur?
Two approaches:

Pairs
Stripes

17

17

First Try: “Pairs”

Each mapper takes a sentence:
Generate all co-occurring term pairs

For all pairs, emit (a, b) → count

Reducers sum up counts associated with these pairs
Use combiners!

18

18

Pairs: Pseudo-Code

class Mapper {
def map(key: Long, value: String) = {

for (u <- tokenize(value)) {
for (v <- neighbors(u)) {

emit((u, v), 1)
}

}
}

}

class Reducer {
def reduce(key: Pair, values: Iterable[Int]) = {

for (value <- values) {
sum += value

}
emit(key, sum)
}

}
19

19

“Pairs” Analysis

Advantages
Easy to implement, easy to understand

Disadvantages
Lots of pairs to sort and shuffle around (upper bound?)

Not many opportunities for combiners to work

20

20

Another Try: “Stripes”

Idea: group together pairs into an associative array

Each mapper takes a sentence:
Generate all co-occurring term pairs

For each term, emit a → { b: countb, c: countc, d: countd … }

(a, b) → 1

(a, c) → 2

(a, d) → 5

(a, e) → 3

(a, f) → 2

a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

Reducers perform element-wise sum of associative arrays

a → { b: 1, d: 5, e: 3 }

a → { b: 1, c: 2, d: 2, f: 2 }

a → { b: 2, c: 2, d: 7, e: 3, f: 2 }
+

21

21

Stripes: Pseudo-Code

class Mapper {
def map(key: Long, value: String) = {
for (u <- tokenize(value)) {

val map = new Map()
for (v <- neighbors(u)) {

map(v) += 1
}
emit(u, map)

}
}

}

class Reducer {
def reduce(key: String, values: Iterable[Map]) = {
val map = new Map()
for (value <- values) {

map += value
}
emit(key, map)

}
}

a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

a → { b: 1, d: 5, e: 3 }

a → { b: 1, c: 2, d: 2, f: 2 }

a → { b: 2, c: 2, d: 7, e: 3, f: 2 }
+

22

22

“Stripes” Analysis

Advantages
Far less sorting and shuffling of key-value pairs

Can make better use of combiners

Disadvantages
More difficult to implement

Underlying object more heavyweight
Overhead associated with data structure manipulations
Fundamental limitation in terms of size of event space

23

23

Cluster size: 38 cores

Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3),

which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

24

24

Pairs

Stripes

25

There is a tradeoff at work here! Pairs will operate better than Stripes in a

smaller cluster because communication is fairly limited anyways (less machines

means that each machine does more of the work and that results can be

aggregated more locally), and thus, the overhead of Stripes causes it to perform

worse. However, as the cluster grows, communication increases, and Stripes

start to shine

25

Tradeoffs

Pairs:
Generates a lot more key-value pairs

Less combining opportunities
More sorting and shuffling

Simple aggregation at reduce

Stripes:
Generates fewer key-value pairs

More opportunities for combining
Less sorting and shuffling

More complex (slower) aggregation at reduce

26

26

Relative Frequencies

How do we estimate relative frequencies from counts?

Why do we want to do this?

How do we do this with MapReduce?

27

27

a → {b1:3, b2 :12, b3 :7, b4 :1, … }

f(B|A): “Stripes”

Easy!
One pass to compute (a, *)

Another pass to directly compute f(B|A)

28

28

f(B|A): “Pairs”

What’s the issue?
Computing relative frequencies requires marginal counts

But the marginal cannot be computed until you see all counts
Buffering is a bad idea!

Solution:
What if we could get the marginal count to arrive at the reducer first?

29

29

(a, b1) → 3
(a, b2) → 12
(a, b3) → 7
(a, b4) → 1
…

(a, *) → 32

(a, b1) → 3 / 32
(a, b2) → 12 / 32
(a, b3) → 7 / 32
(a, b4) → 1 / 32
…

Reducer holds this value in memory

f(B|A): “Pairs”

For this to work:
Emit extra (a, *) for every bn in mapper
Make sure all a’s get sent to same reducer (use partitioner)
Make sure (a, *) comes first (define sort order)
Hold state in reducer across different key-value pairs

30

30

Pairs: Pseudo-Code

class Partitioner {
def getPartition(key: Pair, value: Int, numTasks: Int): Int = {
return key.left % numTasks

}
}

One more thing…

31

31

Synchronization: Pairs vs. Stripes

Approach 1: turn synchronization into an ordering problem
Sort keys into correct order of computation

Partition key space so each reducer receives appropriate set of partial results
Hold state in reducer across multiple key-value pairs to perform computation

Illustrated by the “pairs” approach

Approach 2: data structures that bring partial results together
Each reducer receives all the data it needs to complete the computation

Illustrated by the “stripes” approach

32

32

