
Data-Intensive Distributed Computing

Part 3: From MapReduce to Spark (1/3)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 (Fall 2021)

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451/

1

1

Source: Google

The datacenter is the computer!
What’s the instruction set?

2

2

Abstraction

CPU Cluster of computers

Instruction set
Map/Reduce

Combine/Partition

3

We need a solution for both storage and computing.

3

Source: Wikipedia (ENIAC)

So you like programming in assembly?
4

So when we program in MapReduce is it like programming in assembly?! How can

we do better?

4

Design a higher-level language

Write a compiler

What’s the solution?

5

5

Hadoop is great, but it’s really waaaaay too low level!

What we really need is SQL!
What we really need is a

scripting language!

Answer: Answer:

6

Yahoo and Facebook designed their own solutions on top of Hadoop to make it

more flexible for their engineers.

6

SQL Pig Scripts

Both open-source projects today! 7

7

HDFS

MapReduce

Hive Pig

8

Pig and Hive programs are converted to MapReduce jobs at the end of the day.

8

Source: Wikipedia (Pig)

Pig!

9

9

User Url Time

Amy cnn.com 8:00

Amy bbc.com 10:00

Amy flickr.com 10:05

Fred cnn.com 12:00

Url Category PageRank

cnn.com News 0.9

bbc.com News 0.8

flickr.com Photos 0.7

espn.com Sports 0.9

Visits URL Info

Task: Find the top 10 most visited pages in each category

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: Example

10

10

visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: Example Script

11

11

load visits

group by url

foreach url
generate count load urlInfo

join on url

group by category

foreach category
generate top(urls, 10)

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig Query Plan

12

12

load visits

group by url

foreach url
generate count load urlInfo

join on url

group by category

foreach category
generate top(urls, 10)

Map1

Reduce1 Map2

Reduce2

Map3

Reduce3

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: MapReduce Execution

13

13

visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

14

14

But isn’t Pig slower?
Sure, but c can be slower than assembly too…

15

15

Source: Google

The datacenter is the computer!

What’s the instruction set?
Okay, let’s fix this!

16

Having to formulate the problem in terms of map and reduce only is restrictive.

16

reduce

map

HDFS

HDFS

reduce

map

HDFS

reduce

map

HDFS

reduce

map

HDFS

What’s wrong?

MapReduce Workflows

17

There is a lot of disk i/o involved which significantly reduces running MapReduce

jobs like this.

17

map

HDFS

HDFS

map

HDFS

map

HDFS

map

HDFS

✔ ✗

Want MM?

18

It’s okay not to have reduce but the output of map cannot go to another map.

18

reduce

map

HDFS

HDFS

reduce

map

HDFS

reduce

map

reduce

HDFS

HDFS

✔ ✗

Want MRR?

19

Similarly we cannot directly move the output of reduce to another reduc.

19

Source: Google

The datacenter is the computer!

Let’s enrich the instruction set!

20

Can we add more operations to make the instruction set more flexible?

20

Spark
Answer to “What’s beyond MapReduce?”

Brief history:
Developed at UC Berkeley AMPLab in 2009

Open-sourced in 2010
Became top-level Apache project in February 2014

21

21

Google Trends

Spark vs. Hadoop

September2014

Spark

Hadoop

22

Spark is more popular than Hadoop today.

22

23

map
f: (K1, V1)

⇒ List[(K2, V2)]

List[(K1,V1)]

List[K3,V3])

reduce
g: (K2, Iterable[V2]) ⇒ List[(K3,

V3)]

MapReduce

24

This is the only mechanism we had in MapReduce.

24

RDD[T]

RDD[T]

filter
f: (T) ⇒
Boolean

map
f: (T)
⇒ U

RDD[T]

RDD[U]

flatMap
f: (T) ⇒ TraversableOnce[U]

RDD[T]

RDD[U]

mapPartitions
f: (Iterator[T])
⇒ Iterator[U]

RDD[T]

RDD[U]

Map-like Operations

25

But Spark provides many more operations (enriched instruction set).

25

RDD[(K, V)]

RDD[(K, Iterable[V])]

groupByKey
reduceByKey

f: (V, V) ⇒ V

RDD[(K, V)]

RDD[(K, V)]

RDD[(K, V)]

aggregateByKey
seqOp: (U, V) ⇒ U, combOp: (U,

U) ⇒ U

RDD[(K, U)]

Reduce-like Operations

26

26

And many other operations!

27

27

