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What is Spark?

Efficient

• General execution 

graphs

• In-memory storage

Usable

• Rich APIs in Java, 
Scala, Python

• Interactive shell

Fast and Expressive Cluster Computing 

Engine Compatible with Apache Hadoop
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Spark Programming Model
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Key Concept: RDD’s

Resilient Distributed Datasets

• Collections of objects spread 

across a cluster, stored in RAM 

or on Disk

• Built through parallel 

transformations

• Automatically rebuilt on failure

Operations

• Transformations

(e.g. map, filter, 

groupBy)

• Actions

(e.g. count, collect, 

save)

Write programs in terms of operations on 

distributed datasets
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Example: Log Mining
Load error messages from a log into memory, then 

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(lambda s: “mysql” in s).count()

messages.filter(lambda s: “php” in s).count()

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Full-text search of Wikipedia
• 60GB on 20 EC2 machine
• 0.5 sec vs. 20s for on-disk

Lazy evaluation: Spark doesn’t really do anything until it reaches an action! This helps 
Spark to optimize the execution and load only the data tat is really needed for 
evaluation.
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Impact of Caching on Performance
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Fault Recovery

RDDs track lineage information that can be 
used to efficiently recompute lost data

msgs = textFile.filter(lambda s: s.startsWith(“ERROR”))
.map(lambda s: s.split(“\t”)[2])

HDFS File Filtered RDD Mapped RDD
filter

(func = startsWith(…))
map

(func = split(...))
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Programming with RDD’s
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SparkContext

• Main entry point to Spark functionality

• Available in shell as variable sc
• In standalone programs, you’d make your 

own
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Creating RDDs

# Turn a Python collection into an RDD
> sc.parallelize([1, 2, 3])

# Load text file from local FS, HDFS, or S3
> sc.textFile(“file.txt”)
> sc.textFile(“directory/*.txt”)
> sc.textFile(“hdfs://namenode:9000/path/file”)
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Basic Transformations

> nums = sc.parallelize([1, 2, 3])

# Pass each element through a function
> squares = nums.map(lambda x: x*x)   // {1, 4, 9}

# Keep elements passing a predicate
> even = squares.filter(lambda x: x % 2 == 0) // {4}

# Map each element to zero or more others
> nums.flatMap(lambda x: => range(x))

> # => {0, 0, 1, 0, 1, 2}

Range object (sequence 
of numbers 0, 1, …, x-1)
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Basic Actions
> nums = sc.parallelize([1, 2, 3])

# Retrieve RDD contents as a local collection
> nums.collect() # => [1, 2, 3]

# Return first K elements
> nums.take(2)   # => [1, 2]

# Count number of elements
> nums.count()   # => 3

# Merge elements with an associative function
> nums.reduce(lambda x, y: x + y)  # => 6

# Write elements to a text file
> nums.saveAsTextFile(“hdfs://file.txt”)
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Working with Key-Value Pairs
Spark’s “distributed reduce” transformations operate on 

RDDs of key-value pairs

Python: pair = (a, b)

pair[0] # => a 
pair[1] # => b

Scala: val pair = (a, b)

pair._1 // => a
pair._2 // => b

Java: Tuple2 pair = new Tuple2(a, b); 

pair._1 // => a
pair._2 // => b
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Some Key-Value Operations

> pets = sc.parallelize(
[(“cat”, 1), (“dog”, 1), (“cat”, 2)])

> pets.reduceByKey(lambda x, y: x + y)
# => {(cat, 3), (dog, 1)}

> pets.groupByKey() # => {(cat, [1, 2]), (dog, [1])}

> pets.sortByKey()  # => {(cat, 1), (cat, 2), (dog, 1)}
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> lines = sc.textFile(“hamlet.txt”)

> counts = lines.flatMap(lambda line: line.split(“ ”))
.map(lambda word => (word, 1))
.reduceByKey(lambda x, y: x + y)
.saveAsTextFile(“results”)

Word Count (Python)

“to be or”

“not to be”

“to”
“be”
“or”

“not”
“to”
“be”

(to, 1)
(be, 1)
(or, 1)

(not, 1)
(to, 1)
(be, 1)

(be, 2)
(not, 1)

(or, 1)
(to, 2)
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val textFile = sc.textFile(“hamlet.txt”)

textFile
.flatMap(line => tokenize(line))
.map(word => (word, 1))
.reduceByKey((x, y) => x + y)
.saveAsTextFile(“results”)

Word Count (Scala)
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val textFile = sc.textFile(“hamlet.txt”)

textFile
.map(object mapper {
def map(key: Long, value: Text) =

tokenize(value).foreach(word => write(word, 1))
})
.reduce(object reducer {

def reduce(key: Text, values: Iterable[Int]) = {
var sum = 0
for (value <- values) sum += value
write(key, sum)

})
.saveAsTextFile(“results)

Word Count (Java)
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Other Key-Value Operations
> visits = sc.parallelize([ (“index.html”, “1.2.3.4”),

(“about.html”, “3.4.5.6”),
(“index.html”, “1.3.3.1”) ])

> pageNames = sc.parallelize([ (“index.html”, “Home”),
(“about.html”, “About”) ])

> visits.join(pageNames) 
# (“index.html”, (“1.2.3.4”, “Home”))
# (“index.html”, (“1.3.3.1”, “Home”))
# (“about.html”, (“3.4.5.6”, “About”))

> visits.cogroup(pageNames) 
# (“index.html”, ([“1.2.3.4”, “1.3.3.1”], [“Home”]))
# (“about.html”, ([“3.4.5.6”], [“About”]))
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Setting the Level of Parallelism

All the pair RDD operations take an optional 
second parameter for number of tasks

> words.reduceByKey(lambda x, y: x + y, 5)

> words.groupByKey(5)

> visits.join(pageViews, 5)
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Under The Hood: DAG Scheduler

• General task 

graphs

• Automatically 

pipelines functions

• Data locality aware

• Partitioning aware

to avoid shuffles

= cached partition= RDD

join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

map

Directed Acyclic Graph (DAG)
A job is broken down to multiple stages that form a DAG.
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Physical Operators

Narrow dependency is much faster than wide dependency because it does not 
require shuffling data between working nodes.
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More RDD Operators

• map

• filter

• groupBy

• sort

• union

• join

• leftOuterJoin

• rightOuterJoin

• reduce

• count

• fold

• reduceByKey

• groupByKey

• cogroup

• cross

• zip

sample

take

first

partitionBy

mapWith

pipe

save    ...
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PERFORMANCE
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PageRank Performance
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Since spark avoids heavy disk i/o, it significantly improves the performance. 
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Other Iterative 
Algorithms
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Spark outperforms Hadoop in iterative programs because it tries to keep the data 
that will be used again in the next iteration in memory. In contrast with Hadoop 
which always read and write from/to disk.
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HADOOP ECOSYSTEM AND SPARK
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YARN

YARN = Yet-Another-Resource-Negotiator
Provides API to develop any generic distributed application

Handles scheduling and resource request
MapReduce (MR2) is one such application in YARN

Hadoop’s (original) limitations:
Can only run MapReduce

What if we want to run other distributed frameworks?
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In Hadoop v1.0, the architecture was designed to support Hadoop MapReduce only. 
But later we realised that it is a good idea if other frameworks can also run on 
Hadoop cluster (rather than building a separate cluster for each framework). So in 
v2.0, YARN provides a general resource management system that can support 
different platforms on the same physical cluster.
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Hadoop v1.0

The Job tracker in v1.0 was specific to Hadoop jobs.
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Hadoop v2.0

But the resource manager in v2.0 can support different types of jobs (e.g., Hadoop, 
Spark,…).
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Spark Architecture
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