
Introduction to
Apache Spark

Slides from: Patrick Wendell - Databricks

1

What is Spark?

Efficient

• General execution

graphs

• In-memory storage

Usable

• Rich APIs in Java,
Scala, Python

• Interactive shell

Fast and Expressive Cluster Computing

Engine Compatible with Apache Hadoop

2

Spark Programming Model

3

Key Concept: RDD’s

Resilient Distributed Datasets

• Collections of objects spread

across a cluster, stored in RAM

or on Disk

• Built through parallel

transformations

• Automatically rebuilt on failure

Operations

• Transformations

(e.g. map, filter,

groupBy)

• Actions

(e.g. count, collect,

save)

Write programs in terms of operations on

distributed datasets

4

Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(lambda s: “mysql” in s).count()

messages.filter(lambda s: “php” in s).count()

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Full-text search of Wikipedia
• 60GB on 20 EC2 machine
• 0.5 sec vs. 20s for on-disk

Lazy evaluation: Spark doesn’t really do anything until it reaches an action! This helps
Spark to optimize the execution and load only the data tat is really needed for
evaluation.

5

Impact of Caching on Performance

6
9

58

4
1

30

12

0

20

40

60

80

100

Cache
disabled

25% 50% 75% Fully
cached

E
xe

cu
ti

o
n

 t
im

e
 (

s)

% of working set in cache

6

Fault Recovery

RDDs track lineage information that can be
used to efficiently recompute lost data

msgs = textFile.filter(lambda s: s.startsWith(“ERROR”))
.map(lambda s: s.split(“\t”)[2])

HDFS File Filtered RDD Mapped RDD
filter

(func = startsWith(…))
map

(func = split(...))

7

Programming with RDD’s

8

SparkContext

• Main entry point to Spark functionality

• Available in shell as variable sc
• In standalone programs, you’d make your

own

9

Creating RDDs

Turn a Python collection into an RDD
> sc.parallelize([1, 2, 3])

Load text file from local FS, HDFS, or S3
> sc.textFile(“file.txt”)
> sc.textFile(“directory/*.txt”)
> sc.textFile(“hdfs://namenode:9000/path/file”)

10

Basic Transformations

> nums = sc.parallelize([1, 2, 3])

Pass each element through a function
> squares = nums.map(lambda x: x*x) // {1, 4, 9}

Keep elements passing a predicate
> even = squares.filter(lambda x: x % 2 == 0) // {4}

Map each element to zero or more others
> nums.flatMap(lambda x: => range(x))

> # => {0, 0, 1, 0, 1, 2}

Range object (sequence
of numbers 0, 1, …, x-1)

11

Basic Actions
> nums = sc.parallelize([1, 2, 3])

Retrieve RDD contents as a local collection
> nums.collect() # => [1, 2, 3]

Return first K elements
> nums.take(2) # => [1, 2]

Count number of elements
> nums.count() # => 3

Merge elements with an associative function
> nums.reduce(lambda x, y: x + y) # => 6

Write elements to a text file
> nums.saveAsTextFile(“hdfs://file.txt”)

12

Working with Key-Value Pairs
Spark’s “distributed reduce” transformations operate on

RDDs of key-value pairs

Python: pair = (a, b)

pair[0] # => a
pair[1] # => b

Scala: val pair = (a, b)

pair._1 // => a
pair._2 // => b

Java: Tuple2 pair = new Tuple2(a, b);

pair._1 // => a
pair._2 // => b

13

Some Key-Value Operations

> pets = sc.parallelize(
[(“cat”, 1), (“dog”, 1), (“cat”, 2)])

> pets.reduceByKey(lambda x, y: x + y)
=> {(cat, 3), (dog, 1)}

> pets.groupByKey() # => {(cat, [1, 2]), (dog, [1])}

> pets.sortByKey() # => {(cat, 1), (cat, 2), (dog, 1)}

14

> lines = sc.textFile(“hamlet.txt”)

> counts = lines.flatMap(lambda line: line.split(“ ”))
.map(lambda word => (word, 1))
.reduceByKey(lambda x, y: x + y)
.saveAsTextFile(“results”)

Word Count (Python)

“to be or”

“not to be”

“to”
“be”
“or”

“not”
“to”
“be”

(to, 1)
(be, 1)
(or, 1)

(not, 1)
(to, 1)
(be, 1)

(be, 2)
(not, 1)

(or, 1)
(to, 2)

15

val textFile = sc.textFile(“hamlet.txt”)

textFile
.flatMap(line => tokenize(line))
.map(word => (word, 1))
.reduceByKey((x, y) => x + y)
.saveAsTextFile(“results”)

Word Count (Scala)

16

val textFile = sc.textFile(“hamlet.txt”)

textFile
.map(object mapper {
def map(key: Long, value: Text) =

tokenize(value).foreach(word => write(word, 1))
})
.reduce(object reducer {

def reduce(key: Text, values: Iterable[Int]) = {
var sum = 0
for (value <- values) sum += value
write(key, sum)

})
.saveAsTextFile(“results)

Word Count (Java)

17

Other Key-Value Operations
> visits = sc.parallelize([(“index.html”, “1.2.3.4”),

(“about.html”, “3.4.5.6”),
(“index.html”, “1.3.3.1”)])

> pageNames = sc.parallelize([(“index.html”, “Home”),
(“about.html”, “About”)])

> visits.join(pageNames)
(“index.html”, (“1.2.3.4”, “Home”))
(“index.html”, (“1.3.3.1”, “Home”))
(“about.html”, (“3.4.5.6”, “About”))

> visits.cogroup(pageNames)
(“index.html”, ([“1.2.3.4”, “1.3.3.1”], [“Home”]))
(“about.html”, ([“3.4.5.6”], [“About”]))

18

Setting the Level of Parallelism

All the pair RDD operations take an optional
second parameter for number of tasks

> words.reduceByKey(lambda x, y: x + y, 5)

> words.groupByKey(5)

> visits.join(pageViews, 5)

19

Under The Hood: DAG Scheduler

• General task

graphs

• Automatically

pipelines functions

• Data locality aware

• Partitioning aware

to avoid shuffles

= cached partition= RDD

join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

map

Directed Acyclic Graph (DAG)
A job is broken down to multiple stages that form a DAG.

20

Physical Operators

Narrow dependency is much faster than wide dependency because it does not
require shuffling data between working nodes.

21

More RDD Operators

• map

• filter

• groupBy

• sort

• union

• join

• leftOuterJoin

• rightOuterJoin

• reduce

• count

• fold

• reduceByKey

• groupByKey

• cogroup

• cross

• zip

sample

take

first

partitionBy

mapWith

pipe

save ...

22

23

PERFORMANCE

24

PageRank Performance

1
7

1

8
0

2
3

1
4

0

50

100

150

200

30 60

It
er

at
io

n
 t

im
e

(s
)

Number of machines

Hadoop

Spark

Since spark avoids heavy disk i/o, it significantly improves the performance.

25

Other Iterative
Algorithms

0.96

110

0 25 50 75 100 125

Logistic Regression

4.1

155

0 30 60 90 120 150 180

K-Means Clustering
Hadoop

Spark

Time per Iteration (s)

Spark outperforms Hadoop in iterative programs because it tries to keep the data
that will be used again in the next iteration in memory. In contrast with Hadoop
which always read and write from/to disk.

26

HADOOP ECOSYSTEM AND SPARK

27

YARN

YARN = Yet-Another-Resource-Negotiator
Provides API to develop any generic distributed application

Handles scheduling and resource request
MapReduce (MR2) is one such application in YARN

Hadoop’s (original) limitations:
Can only run MapReduce

What if we want to run other distributed frameworks?

28

In Hadoop v1.0, the architecture was designed to support Hadoop MapReduce only.
But later we realised that it is a good idea if other frameworks can also run on
Hadoop cluster (rather than building a separate cluster for each framework). So in
v2.0, YARN provides a general resource management system that can support
different platforms on the same physical cluster.

29

Hadoop v1.0

The Job tracker in v1.0 was specific to Hadoop jobs.

30

Hadoop v2.0

But the resource manager in v2.0 can support different types of jobs (e.g., Hadoop,
Spark,…).

31

Spark Architecture

32

