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Pairs. Stripes.
Seems pretty trivial...

More than a “toy problem”?
Answer: language models




Language Models

P(wi,we, ..., wr) Assigning a probability to a sentence

Why?
* Machine translation
* P(High winds tonight) > P(Large winds tonight)
* Spell Correction
* P(Waterloo is a great city) > P(Waterloo is a grate city)
* Speech recognition
* P (lsaw avan) > P(eyes awe of an)

Slide: from Dan Jurafsky

Sentence with T words - assign a probability
to it



Language Models

P(wy,wa, ..., wr)

= P(w1)P(wsa|wy) P(ws|lwy, ws) ... P(wp|wy, ..., wp_1)

[chain rule]

P(“Waterloo is a great city”) =

P(Waterloo) x P(is | Waterloo) x P(a | Waterloo is)
x P(great | Waterloo is a)

x P(city | Waterloo is a great)

Is this tractable?

Sentence with T words - assign a probability
to it
P(A,B) = P(B) P(A|B)



Approximating Probabilities: N-Grams

Basic idea: limit history to fixed number of (N — 1) words
(Markov Assumption)

P(wg|wy, ..., wk—1) ~ P(wg|wg—N41, - s Wk—-1)
N=1: Unigram Language Model

P(wg|wy, ..., wp—1) = P(wy)

= P(wy,wa, ..., wr) ~ P(wi)P(ws) ... Plwr)




Approximating Probabilities: N-Grams

Basic idea: limit history to fixed number of (N — 1) words
(Markov Assumption)

P(wg|wy, ..., wig—1) = P(wg|wg—N+1,- -, Wi—1)
N=2: Bigram Language Model

P(wg|wy, ..., wi—1) = P(wg|wg—1)

= P(wy,wa,...,wr) ~ Pw|< S >)P(ws|wy) ... Plwr|wr_y)

Since we also want to include the first word
In the bigram model, we need a dummy
beginning of sentence marker <s>. We
usually also have an end of sentence
marker but for the sake of brevity, | don't
show that here.



Approximating Probabilities: N-Grams

Basic idea: limit history to fixed number of (N — 1) words
(Markov Assumption)

P(wg|wy, ..., wk—1) ~ P(wg|wg—N41, - s Wk—-1)
N=3: Trigram Language Model
P(wg|wy, ..., wi—1) = P(wg|wi—2, w,_1)

= P(wy,wa,...,wr) = Plw|<S>< S >)... Plwr|lwr_swr_1)
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Building N-Gram Language Models

Compute maximum likelihood estimates (MLE) for
Individual n-gram probabilities

Unigram  P(w,) = Cgifi)
Bigram P(’tU.i,'LtJj) = %

Plwi,w;)  Clwi,w;) C(w;., wy)

P(wj|w;) = Plw)  >,Clw,w)  C(w)

Generalizes to higher-order n-grams
State of the art models use ~5-grams

We already know how to do this in MapReduce!
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Estimating Probability Distribution
Sparsity problem
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Example: Bigram Language Model

<s> |am Sam </s>
<s> Sam|am </s>
<s> | do not like green eggs and ham </s>

Training Corpus

P(1]|<s>)=2/3=0.67 P(Sam | <s>)=1/3=0.33
P(am | 1)=2/3=0.67 P(do|1)=1/3=0.33

P(</s>| Sam)=1/2=0.50 P(Sam | am)=1/2=0.50

Bigram Probability Estimates
Note: We don’t ever cross sentence boundaries
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Data Sparsity

P(l]<s>)=2/3=0.67 P(Sam | <s>)=1/3=0.33
P(am | 1)=2/3=0.67 P(do|1)=1/3=0.33

P(</s> | Sam )=1/2 =0.50 P(Sam | am)=1/2=0.50

Bigram Probability Estimates

P(I like ham)

=P(1|<s>)P(like|!)P(ham | like)P(</s>| ham)
=0

Why is this b2d?

Issue: Sparsity!

Why is the 0 bad ?
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Solution: Smoothing

Zeros are bad for any statistical estimator

Need better estimators because MLEs give us a lot of zeros
A distribution without zeros is “smoother”

The Robin Hood Philosophy: Take from the rich (seen n-grams)

and give to the poor (unseen n-grams)
Need better estimators because MLEs give us a lot of zeros
Dniains A distribution without zeros is “smoother

L)

Lots of techniques:
Laplace, Good-Turing, Katz backoff, Jelinek-Mercer
Kneser-Ney represents best practice
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Laplace Smoothing

Learn fancy wor
simple ideas!

ds for

Simplest and oldest smoothing technique
Just add 1 to all n-gram counts including the unseen ones
So, what do the revised estimates look like?

18



Laplace Smoothing

Unigrams
C(w; Clw;) +1
Pﬂ#fLE(“f"i) = g\f ) — PLAP(“/':’) = E\]_:V
Bigrams
Clw;, w;) ' _ Clw;,wy) +1
Prrrp(w;, w;) = N 4 Prap(w;,wj) = W

What if we don’t know V?

You have to make sure that the joint is well-
formed and understand how the
conditional probability formula is derived.



Source: http://www.flickr.com/photos/guvnah/7861418602/

Search!
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The Central Problem in Search
Author
Searcher
2
Concepts Concepts
Query Terms Document Terms
“tragic love story” “fateful star-crossed romance”
Do these represent the same concepts?

Why is IR hard? Because language is hard!
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Abstract IR Architecture
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How do we represent text?
Remember: computers don’t “understand” anything!

“Bag of words”

Treat all the words in a document as index terms
Assign a “weight” to each term based on “importance”
(or, in simplest case, presence/absence of word)
Disregard order, structure, meaning, etc. of the words
Simple, yet effective!

Assumptions
Term occurrence is independent
Document relevance is independent
“Words” are well-defined
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What’s a word?
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Sample Document

McDonald's slims down spuds
“Bag of Words”

Fast-food chain to reduce certain types of fat

in its french fries with new cooking oil.

NEW YORK (CNN/Money) - McDonald's Corp. is 14 x McDonalds
cutting the amount of "bad" fat in its french fries

nearly in half, the fast-food chain said Tuesday as it

moves to make all its fried menu items healthier. 12 x fat

But does that mean the popular shoestring fries won't

taste the same? The company says no. "It's a win-win 11 x fries
for our customers because they are getting the same

great french-fry taste along with an even healthier

nutrition profile," said Mike Roberts, president of 8 x new
McDonald's USA.
But others are not so sure. McDonald's will not 7 x french

specifically discuss the kind of oil it plans to use, but
at least one nutrition expert says playing with the

formula could mean a different taste. 6 x company, Said, nutrition
Shares of Oak Brook, Ill.-based McDonald's (MCD: .

down $0.54 to $23.22, Research, Estimates) were 5x fOOd, Oll, percent, reduce,
lower Tuesday afternoon. It was unclear Tuesday

whether competitors Burger King and Wendy's taste, Tuesday

International (WEN: down $0.80 to $34.91, Research,
Estimates) would follow suit. Neither company could
immediately be reached for comment.
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Counting Words...

Documents

\

Bag of

Words SXX, senxms, word kMedge, etc.

Inverted

case folding, tokenization, stopword removal, stemming

Index
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Source: http://www.flickr.com/photos/guvnah/7861418602/
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cs451

Doc 1

one fish, two fish

blue

cat

egg

fish

green

ham

hat

one

red

two

L] ]
L]
L]
Ll ]
L]
LT ]
L]
L]
L] ]
LTI

Doc 3 Doc 4

Doc 2
red fish, blue fish cat in the hat green eggs and ham

What goes in each cell?

boolean
count
positions
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Abstract IR Architecture
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Doc 1

one fish, two fish

blue

cat

egg

fish

green

ham

hat

one

red

two

L] ]
L]
L]
Ll ]
L]
LT ]
L]
L]
L] ]
LTI

Doc 3 Doc 4

Doc 2
red fish, blue fish cat in the hat green eggs and ham

Indexing: building this structure

Retrieval: manipulating this structure
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Indexing: Performance Analysis

Fundamentally, a large sorting problem
Terms usually fit in memory
Postings usually don’t

How is it done on a single machine?
How can it be done with MapReduce?

First, let’s characterize the problem size:
Size of vocabulary
Size of postings
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Vocabulary Size: Heaps’ Law

M is vocabulary size

M — kT b T is collection size (number of documents)

k and b are constants

Typically, k is between 30 and 100, b is between 0.4 and 0.6

Heaps’ Law: linear in log-log space

Surprise: Vocabulary size grows unbounded!
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Heaps’ Law for RCV1

k=44
°7 / b=0.49
- //
AR First 1,000,020 terms:
- Predicted = 38,323
| Actual = 38,365

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20,

Manning, Raghavan, Schiitze, Introduction to Information Retrieval (2008)

1996-August 19, 1997)

34



Postings Size: Zipf's Law

l/ks N number of elements
f(ka SsN) = k rank
ZnNzl (l/ns) s characteristic exponent

Zipf’'s Law: (also) linear in log-log space
Specific case of Power Law distributions

In other words:
A few elements occur very frequently
Many elements occur very infrequently
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Zipf's Law for RCV1
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Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

Manning, Raghavan, Schiitze, Introduction to Information Retrieval (2008)
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log(frecuency)

14

12

10

Zipf’'s Law for Wikipedia

Zipf's law

- Esperanto
- Latin

- Ukrainian
« Czech

+ italian
Spanish
Slovene
Finnish
Hebrew
Turkish
Hungarian
Galician
Danish
Belarusian
Portuguese

German
Malay
English
Slovak
Romanian
Polish
Uzbek
French
Basque
Serbian
Dutch
Catalan
Indonesian
Lithuanian
Croatian

6 8 10 12
log(rank)

14

Rank versus frequency for the first 10m words in 30 Wikipedias (dumps from October 2015)
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MapReduce: Index Construction

Map over all documents

Emit term as key, (docid, tf) as value
Emit other information as necessary (e.g., term position)

Sort/shuffle: group postings by term

Reduce

Gather and sort the postings (typically by docid)
Write postings to disk

MapReduce does all the heavy lifting!
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Inverted Indexing with MapReduce

Doc1 Doc2 Doc 3
one fish, two fish red fish, blue fish cat in the hat

one red cat
M a p two blue hat
fish fish

| Shuffle and Sort: aggregate values by keys

bl
Reduce
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Inverted Indexing: Pseudo-Code

class Mapper {
def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {
counts(term) +=1
}
for ((term, tf) <- counts) {
emit(term, (docid, tf))
}
}
}

class Reducer {
def reduce(term: String, postings: Iterable[(docid, tf)]) = {
val p = new List()
for ((docid. tih<=postings} £ m . _ _
p.gfpend|(docid, tf) “>»What’s the problem?
} kT ——— L - .
p.sort()
emit(term, p)
}
} Stay tuned...
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