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Shuffle and Sort: aggregate values by keys

Map

Reduce

Inverted Indexing with MapReduce
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Inverted Indexing: Pseudo-Code
class Mapper {

def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {

counts(term) += 1
}
for ((term, tf) <- counts) {

emit(term, (docid, tf))
}

}
}

class Reducer {
def reduce(term: String, postings: Iterable[(docid, tf)]) = {
val p = new List()
for ((docid, tf) <- postings) {

p.append((docid, tf))
}
p.sort()
emit(term, p)

}
} 7
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How is this different?
Let the framework do the sorting!

Another Try…
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This is called “secondary sorting”

(a, (b,c)) → ((a,b), c)); Now the data is sorted based on a and b
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MapReduce sorts the data only based on the key. So if we need the data to be 

sorted based on a part of the value, we need to move that part to the key.
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Inverted Indexing: Pseudo-Code
class Mapper {

def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {

counts(term) += 1
}
for ((term, tf) <- counts) {

emit((term, docid), tf)
}

}
}

class Reducer {
var prev = null
val postings = new PostingsList()

def reduce(key: Pair, tf: Iterable[Int]) = {
if key.term != prev and prev != null {

emit(prev, postings)
postings.reset()

}
postings.append(key.docid, tf.first)
prev = key.term

}

def cleanup() = {
emit(prev, postings)

}
}

What else do we need to do?
9
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We still have the memory overflow issue, but the different is that now key.docid is 

sorted when we add them to the list. As a result, we can compress these values 

using integer compression techniques to reduce the size of the list.
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2 1 3 1 2 3

2 1 3 1 2 3

1fish 9 21 34 35 80 …

1fish 8 12 13 1 45 …

Conceptually:

In Practice:

Don’t encode docids, encode gaps (or d-gaps) 
But it’s not obvious that this save space…

= delta encoding, delta compression, gap compression

Postings Encoding
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Overview of Integer Compression

Byte-aligned technique
VarInt (Vbyte)
Group VarInt

Bit-aligned
Unary codes
/ codes

Golomb codes (local Bernoulli model)

Word-aligned
Simple family

Bit packing family (PForDelta, etc.)
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0

1 0

1 1 0

7 bits

14 bits

21 bits

Beware of branch mispredicts!

VarInt (Vbyte)

Works okay, easy to implement…

Simple idea: use only as many bytes as needed
Need to reserve one bit per byte as the “continuation bit”

Use remaining bits for encoding value
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28 1-bit numbers

14 2-bit numbers

9 3-bit numbers

7 4-bit numbers

(9 total ways)

“selectors”

Simple-9
How many different ways can we divide up 28 bits?

Efficient decompression with hard-coded decoders
Simple Family – general idea applies to 64-bit words, etc.

13

13



x  1, parameter M:

Example:

M = 3, r = 0, 1, 2 (0, 10, 11)

M = 6, r = 0, 1, 2, 3, 4, 5 (00, 01, 100, 101, 110, 111)

x = 9, M = 3: q = 2, r = 2, code = 110:11

x = 9, M = 6: q = 1, r = 2, code = 10:100

Golomb Codes

Punch line: optimal M ~ 0.69 (N/df)
Different M for every term!

Encoded in unary

Encoded in truncated binary

Final result: (q + 1) r

14

N = Number of documents

Df = document frequency (the number of documents a term appears in)
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Inverted Indexing: Pseudo-Code
class Mapper {

def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {

counts(term) += 1
}
for ((term, tf) <- counts) {

emit((term, docid), tf)
}

}
}

class Reducer {
var prev = null
val postings = new PostingsList()

def reduce(key: Pair, tf: Iterable[Int]) = {
if key.term != prev and prev != null {

emit(prev, postings)
postings.reset()

}
postings.append(key.docid, tf.first)
prev = key.term

}

def cleanup() = {
emit(prev, postings)

}
} 15

We can perform integer compression now!
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Write postings compressed

…

Sound familiar?

But wait! How do we set the 
Golomb parameter M?

We need the df to set M…

But we don’t know the df until 
we’ve seen all postings!

Recall: optimal M ~ 0.69 (N/df)

Chicken and Egg?
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The problem is that we cannot calculate df until we see all fish *s
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Getting the df

In the mapper:
Emit “special” key-value pairs to keep track of df

In the reducer:
Make sure “special” key-value pairs come first: process them to determine df

Remember: proper partitioning!

17

17
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1one
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Input document…

Emit normal key-value pairs…

Emit “special” key-value pairs to keep track of df…

Getting the df: Modified Mapper
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Write postings compressed

fish …

…

First, compute the df by summing 
contributions from all “special” key-value pair…

Compute M from df

Important: properly define sort order to make 
sure “special” key-value pairs come first!

Where have we seen this before?

Getting the df: Modified Reducer
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We have see this before in the pairs implementation of f(B|A) i.e., part 2b 
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MapReduce it?

The indexing problem
Scalability is critical

Must be relatively fast, but need not be real time
Fundamentally a batch operation

Incremental updates may or may not be important
For the web, crawling is a challenge in itself

The retrieval problem
Must have sub-second response time

For the web, only need relatively few results
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Assume everything fits in memory on a single machine…
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Boolean Retrieval

Users express queries as a Boolean expression
AND, OR, NOT

Can be arbitrarily nested

Retrieval is based on the notion of sets
Any query divides the collection into two sets: retrieved, not-retrieved

Pure Boolean systems do not define an ordering of the results
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( blue AND fish ) OR ham

blue fish

ANDham

OR

1

2blue

fish 2

1ham 3

3 5 6 7 8 9

4 5

5 9

Boolean Retrieval

To execute a Boolean query:

Build query syntax tree

For each clause, look 
up postings

Traverse postings and apply Boolean operator
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Efficiency analysis?

Term-at-a-Time
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Efficiency analysis?
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Boolean Retrieval

Users express queries as a Boolean expression
AND, OR, NOT

Can be arbitrarily nested

Retrieval is based on the notion of sets
Any query divides the collection into two sets: retrieved, not-retrieved

Pure Boolean systems do not define an ordering of the results
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Ranked Retrieval

Order documents by how likely they are to be relevant
Estimate relevance(q, di)

Sort documents by relevance
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Term Weighting

Term weights consist of two components
Local: how important is the term in this document?
Global: how important is the term in the collection?

Here’s the intuition:
Terms that appear often in a document should get high weights
Terms that appear in many documents should get low weights

How do we capture this mathematically?
Term frequency (local)

Inverse document frequency (global)
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TF-IDF* Term Weighting

*Term Frequency-Inverse Document Frequency
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Look up postings lists corresponding to query terms

Traverse postings for each query term

Store partial query-document scores in accumulators

Select top k results to return

Retrieval in a Nutshell
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fish 2 1 3 1 2 31 9 21 34 35 80 …

blue 2 1 19 21 35 …

Accumulators
(e.g. min heap)

Document score in top k?

Yes: Insert document score, extract-min if heap too large

No: Do nothing

Retrieval: Document-at-a-Time

Tradeoffs:
Small memory footprint (good)

Skipping possible to avoid reading all postings (good)
More seeks and irregular data accesses (bad)

Evaluate documents one at a time (score all query terms)
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fish 2 1 3 1 2 31 9 21 34 35 80 …

blue 2 1 19 21 35 …

Accumulators
(e.g., hash)

Score{q=x}(doc n) = s

Retrieval: Term-At-A-Time

Tradeoffs:
Early termination heuristics (good)

Large memory footprint (bad), but filtering heuristics possible

Evaluate documents one query term at a time
Usually, starting from most rare term (often with tf-sorted postings)
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