
Data-Intensive Distributed Computing

Part 4: Analyzing Text (2/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Fall 2021)

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451

1

1

Search!

2

2

DocumentsQuery

Hits

Representation
Function

Representation
Function

Query Representation Document Representation

Comparison
Function Index

offlineonline

Abstract IR Architecture

3

3

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

1

1

1

1

1

1

1 2 3

1

1

1

4

blue

cat

egg

fish

green

ham

hat

one

3

4

1

4

4

3

2

1

blue

cat

egg

fish

green

ham

hat

one

2

green eggs and ham
Doc 4

1red

1two

2red

1two

4

4

2

1

1

2

1

1

1

1

1

1

1

2

1

2

1

1

1

1 2 3

1

1

1

4

1

1

1

1

1

1

2

1

df

blue

cat

egg

fish

green

ham

hat

one

1

1

1

1

1

1

2

1

blue

cat

egg

fish

green

ham

hat

one

1 1red

1 1two

1red

1two

3

4

1

4

4

3

2

1

2

2

1

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

green eggs and ham
Doc 4

tf

5

5

1

1

2

1

1

2 2

1
1

1

1

1

1

1

1

2

1one

1two

1fish

one fish, two fish
Doc 1

2red

2blue

2fish

red fish, blue fish
Doc 2

3cat

3hat

cat in the hat
Doc 3

1fish 2

1one
1two

2red

3cat

2blue

3hat

Shuffle and Sort: aggregate values by keys

Map

Reduce

Inverted Indexing with MapReduce

6

6

Inverted Indexing: Pseudo-Code
class Mapper {

def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {

counts(term) += 1
}
for ((term, tf) <- counts) {

emit(term, (docid, tf))
}

}
}

class Reducer {
def reduce(term: String, postings: Iterable[(docid, tf)]) = {
val p = new List()
for ((docid, tf) <- postings) {

p.append((docid, tf))
}
p.sort()
emit(term, p)

}
} 7

7

2

1

3

1

2

3

1fish

9

21

(values)(key)

34

35

80

1fish

9

21

(values)(keys)

34

35

80

fish

fish

fish

fish

fish

How is this different?
Let the framework do the sorting!

Another Try…

2

1

3

1

2

3

This is called “secondary sorting”

(a, (b,c)) → ((a,b), c)); Now the data is sorted based on a and b

8

MapReduce sorts the data only based on the key. So if we need the data to be

sorted based on a part of the value, we need to move that part to the key.

8

Inverted Indexing: Pseudo-Code
class Mapper {

def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {

counts(term) += 1
}
for ((term, tf) <- counts) {

emit((term, docid), tf)
}

}
}

class Reducer {
var prev = null
val postings = new PostingsList()

def reduce(key: Pair, tf: Iterable[Int]) = {
if key.term != prev and prev != null {

emit(prev, postings)
postings.reset()

}
postings.append(key.docid, tf.first)
prev = key.term

}

def cleanup() = {
emit(prev, postings)

}
}

What else do we need to do?
9

2

1

3

1

2

3

1fish

9

21

(values)(key)

34

35

80

1fish

9

21

(values)(keys)

34

35

80

fish

fish

fish

fish

fish

2

1

3

1

2

3

We still have the memory overflow issue, but the different is that now key.docid is

sorted when we add them to the list. As a result, we can compress these values

using integer compression techniques to reduce the size of the list.

9

2 1 3 1 2 3

2 1 3 1 2 3

1fish 9 21 34 35 80 …

1fish 8 12 13 1 45 …

Conceptually:

In Practice:

Don’t encode docids, encode gaps (or d-gaps)
But it’s not obvious that this save space…

= delta encoding, delta compression, gap compression

Postings Encoding

10

10

Overview of Integer Compression

Byte-aligned technique
VarInt (Vbyte)
Group VarInt

Bit-aligned
Unary codes
/ codes

Golomb codes (local Bernoulli model)

Word-aligned
Simple family

Bit packing family (PForDelta, etc.)

11

11

0

1 0

1 1 0

7 bits

14 bits

21 bits

Beware of branch mispredicts!

VarInt (Vbyte)

Works okay, easy to implement…

Simple idea: use only as many bytes as needed
Need to reserve one bit per byte as the “continuation bit”

Use remaining bits for encoding value

12

12

28 1-bit numbers

14 2-bit numbers

9 3-bit numbers

7 4-bit numbers

(9 total ways)

“selectors”

Simple-9
How many different ways can we divide up 28 bits?

Efficient decompression with hard-coded decoders
Simple Family – general idea applies to 64-bit words, etc.

13

13

x 1, parameter M:

Example:

M = 3, r = 0, 1, 2 (0, 10, 11)

M = 6, r = 0, 1, 2, 3, 4, 5 (00, 01, 100, 101, 110, 111)

x = 9, M = 3: q = 2, r = 2, code = 110:11

x = 9, M = 6: q = 1, r = 2, code = 10:100

Golomb Codes

Punch line: optimal M ~ 0.69 (N/df)
Different M for every term!

Encoded in unary

Encoded in truncated binary

Final result: (q + 1) r

14

N = Number of documents

Df = document frequency (the number of documents a term appears in)

14

Inverted Indexing: Pseudo-Code
class Mapper {

def map(docid: Long, doc: String) = {
val counts = new Map()
for (term <- tokenize(doc)) {

counts(term) += 1
}
for ((term, tf) <- counts) {

emit((term, docid), tf)
}

}
}

class Reducer {
var prev = null
val postings = new PostingsList()

def reduce(key: Pair, tf: Iterable[Int]) = {
if key.term != prev and prev != null {

emit(prev, postings)
postings.reset()

}
postings.append(key.docid, tf.first)
prev = key.term

}

def cleanup() = {
emit(prev, postings)

}
} 15

We can perform integer compression now!

15

1fish

9

21

(value)(key)

34

35

80

fish

fish

fish

fish

fish

Write postings compressed

…

Sound familiar?

But wait! How do we set the
Golomb parameter M?

We need the df to set M…

But we don’t know the df until
we’ve seen all postings!

Recall: optimal M ~ 0.69 (N/df)

Chicken and Egg?

2

1

3

1

2

3

16

The problem is that we cannot calculate df until we see all fish *s

16

Getting the df

In the mapper:
Emit “special” key-value pairs to keep track of df

In the reducer:
Make sure “special” key-value pairs come first: process them to determine df

Remember: proper partitioning!

17

17

one fish, two fish
Doc 1

1fish

(value)(key)

1one

1two

fish

one

two

Input document…

Emit normal key-value pairs…

Emit “special” key-value pairs to keep track of df…

Getting the df: Modified Mapper

2

1

1

1

1

1

18

18

1fish

9

21

(value)(key)

34

35

80

fish

fish

fish

fish

fish
Write postings compressed

fish …

…

First, compute the df by summing
contributions from all “special” key-value pair…

Compute M from df

Important: properly define sort order to make
sure “special” key-value pairs come first!

Where have we seen this before?

Getting the df: Modified Reducer

2

1

3

1

2

3

1 1 1

19

We have see this before in the pairs implementation of f(B|A) i.e., part 2b

19

DocumentsQuery

Hits

Representation
Function

Representation
Function

Query Representation Document Representation

Comparison
Function Index

offlineonline

Abstract IR Architecture

20

20

MapReduce it?

The indexing problem
Scalability is critical

Must be relatively fast, but need not be real time
Fundamentally a batch operation

Incremental updates may or may not be important
For the web, crawling is a challenge in itself

The retrieval problem
Must have sub-second response time

For the web, only need relatively few results

21

21

Assume everything fits in memory on a single machine…

22

22

Boolean Retrieval

Users express queries as a Boolean expression
AND, OR, NOT

Can be arbitrarily nested

Retrieval is based on the notion of sets
Any query divides the collection into two sets: retrieved, not-retrieved

Pure Boolean systems do not define an ordering of the results

23

23

(blue AND fish) OR ham

blue fish

ANDham

OR

1

2blue

fish 2

1ham 3

3 5 6 7 8 9

4 5

5 9

Boolean Retrieval

To execute a Boolean query:

Build query syntax tree

For each clause, look
up postings

Traverse postings and apply Boolean operator

24

24

blue fish

ANDham

OR

1

2blue

fish 2

1ham 3

3 5 6 7 8 9

4 5

5 9

2 5 9

blue fish

AND

blue fish

ANDham

OR 1 2 3 4 5 9

Efficiency analysis?

Term-at-a-Time

25

25

1

2blue

fish 2

1ham 3

3 5 6 7 8 9

4 5

5 9

Tradeoffs?
Efficiency analysis?

Document-at-a-Time

blue fish

ANDham

OR

1

2blue

fish 2

1ham 3

3 5 6 7 8 9

4 5

5 9

26

26

Boolean Retrieval

Users express queries as a Boolean expression
AND, OR, NOT

Can be arbitrarily nested

Retrieval is based on the notion of sets
Any query divides the collection into two sets: retrieved, not-retrieved

Pure Boolean systems do not define an ordering of the results

27

27

Ranked Retrieval

Order documents by how likely they are to be relevant
Estimate relevance(q, di)

Sort documents by relevance

28

28

Term Weighting

Term weights consist of two components
Local: how important is the term in this document?
Global: how important is the term in the collection?

Here’s the intuition:
Terms that appear often in a document should get high weights
Terms that appear in many documents should get low weights

How do we capture this mathematically?
Term frequency (local)

Inverse document frequency (global)

29

29

30

i

jiji
n

N
w logtf ,, =

jiw ,

ji,tf

N

in

weight assigned to term i in document j

number of occurrence of term i in document j

number of documents in entire collection

number of documents with term i

TF-IDF* Term Weighting

*Term Frequency-Inverse Document Frequency
30

Look up postings lists corresponding to query terms

Traverse postings for each query term

Store partial query-document scores in accumulators

Select top k results to return

Retrieval in a Nutshell

31

31

fish 2 1 3 1 2 31 9 21 34 35 80 …

blue 2 1 19 21 35 …

Accumulators
(e.g. min heap)

Document score in top k?

Yes: Insert document score, extract-min if heap too large

No: Do nothing

Retrieval: Document-at-a-Time

Tradeoffs:
Small memory footprint (good)

Skipping possible to avoid reading all postings (good)
More seeks and irregular data accesses (bad)

Evaluate documents one at a time (score all query terms)

32

32

fish 2 1 3 1 2 31 9 21 34 35 80 …

blue 2 1 19 21 35 …

Accumulators
(e.g., hash)

Score{q=x}(doc n) = s

Retrieval: Term-At-A-Time

Tradeoffs:
Early termination heuristics (good)

Large memory footprint (bad), but filtering heuristics possible

Evaluate documents one query term at a time
Usually, starting from most rare term (often with tf-sorted postings)

33

33

