
Data-Intensive Distributed Computing

Part 5: Analyzing Graphs (2/2)

CS 431/631 451/651 (Fall 2021)

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451/

Thanks to Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University)

1

1

Structure of the Course

“Core” framework features

and algorithm design

A
n
a
ly

z
in

g
T

e
x
t

A
n

a
ly

z
in

g
G

ra
p

h
s

A
n
a
ly

z
in

g

R
e
la

ti
o
n
a
l
D

a
ta

D
a
ta

 M
in

in
g

2

2

3

3

uwaterloo.ca fakeuw.ca

University of waterloo University of
waterloo University of waterloo University

of waterloo University of waterloo
University of waterloo University of

waterloo University of waterloo

Ranked retrieval fails!

Query: University of Waterloo

4

4

 Web contains many sources of information
Who to “trust”?

▪ Trick: Trustworthy pages may point to each other!

5

5

 All web pages are not equally “important”

www.joeschmoe.com vs. www.stanford.edu

 There is large diversity
in the web-graph
node connectivity.
Let’s rank the pages by
the link structure!

6

6

7

7

 Idea: Links as votes

▪ Page is more important if it has more links

▪ In-coming links? Out-going links?

 Think of in-links as votes:
▪ www.stanford.edu has 23,400 in-links

▪ www.joeschmoe.com has 1 in-link

 Are all in-links equal?

▪ Links from important pages count more

▪ Recursive question!

8

8

B

38.4
C

34.3

E

8.1
F

3.9

D

3.9

A

3.3

1.6
1.6 1.6 1.6 1.6

9

9

10

 Each link’s vote is proportional to the
importance of its source page

 If page j with importance rj has n out-links,
each link gets rj / n votes

 Page j’s own importance is the sum of the
votes on its in-links

j

ki

rj/3

rj/3rj/3
rj = ri/3+rk/4

ri/3 rk/4

10

 Define a “rank” rj for page j

→

=
ji

i
j

r
r

id

y

ma
a/2

y/2
a/2

m

y/2

“Flow” equations:

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

𝒅𝒊 … out-degree of node 𝒊

11

11

12

 3 equations, 3 unknowns,
no constants
▪ No unique solution

▪ All solutions equivalent modulo the scale factor
 Additional constraint forces uniqueness:

▪ 𝒓𝒚 + 𝒓𝒂 + 𝒓𝒎 = 𝟏

▪ Solution: 𝒓𝒚 =
𝟐

𝟓
, 𝒓𝒂 =

𝟐

𝟓
, 𝒓𝒎 =

𝟏

𝟓
 Gaussian elimination method works for

small examples, but we need a better
method for large web-size graphs

 We need a new formulation!

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

Flow equations:

12

13

 Stochastic adjacency matrix 𝑴
▪ Let page 𝑖 has 𝑑𝑖 out-links

▪ If 𝑖 → 𝑗, then 𝑀𝑗𝑖 =
1

𝑑𝑖

else 𝑀𝑗𝑖 = 0
▪ 𝑴 is a column stochastic matrix
▪ Columns sum to 1

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

y

ma
a/2

y/2
a/2

m

y/2

13

 Power Iteration:

▪ Set 𝑟𝑗 = 1/N

▪ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ 2: 𝑟 = 𝑟′

▪ Goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

14

14

 Power Iteration:

▪ Set 𝑟𝑗 = 1/N

▪ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ 2: 𝑟 = 𝑟′

▪ Goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

15

15

16

 Imagine a random web surfer:

▪ At any time 𝒕, surfer is on some page 𝒊

▪ At time 𝒕 + 𝟏, the surfer follows an
out-link from 𝒊 uniformly at random

▪ Ends up on some page 𝒋 linked from 𝒊

▪ Process repeats indefinitely

→

=
ji

i
j

r
r

(i)dout

j

i1 i2 i3

16

17

 Imagine a random web surfer:

▪ At any time 𝒕, surfer is on some page 𝒊

▪ At time 𝒕 + 𝟏, the surfer follows an
out-link from 𝒊 uniformly at random

▪ Ends up on some page 𝒋 linked from 𝒊

▪ Process repeats indefinitely

 Let:
 𝒑(𝒕) … vector whose 𝒊th coordinate is the

prob. that the surfer is at page 𝒊 at time 𝒕

▪ So, 𝒑(𝒕) is a probability distribution over pages

→

=
ji

i
j

r
r

(i)dout

j

i1 i2 i3

17

18

 Where is the surfer at time t+1?

▪ Follows a link uniformly at random

𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕)

 Suppose the random walk reaches a state
𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕) = 𝒑(𝒕)

then 𝒑(𝒕) is stationary distribution of a random walk

)(M)1(tptp =+

j

i1 i2 i3

18

19

 A central result from the theory of random
walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions,
the stationary distribution is unique and

eventually will be reached no matter what the
initial probability distribution at time t = 0

19

20

20

 Does this converge?

 Does it converge to what we want?

 Are results reasonable?

→

+
=

ji

t

it

j

r
r

i

)(
)1(

d

21

21

 Example:
ra 1 0 1 0

rb 0 1 0 1
=

ba

Iteration 0, 1, 2, …

→

+
=

ji

t

it

j

r
r

i

)(
)1(

d

22

22

 Example:
ra 1 0 0 0

rb 0 1 0 0
=

ba

Iteration 0, 1, 2, …

→

+
=

ji

t

it

j

r
r

i

)(
)1(

d

23

23

2 problems:
 (1) Some pages are

dead ends (have no out-links)

▪ Random walk has “nowhere” to go to

▪ Such pages cause importance to “leak out”

 (2) Spider traps:
(all out-links are within the group)

▪ Random walker gets “stuck” in a trap

▪ And eventually spider traps absorb all importance

Dead end

24

24

 Power Iteration:

▪ Set 𝑟𝑗 = 1

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 3/6 7/12 16/24 1

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node m.
25

25

26

 The Google solution for spider traps: At each
time step, the random surfer has two options

▪ With prob. , follow a link at random

▪ With prob. 1-, jump to some random page

▪ Common values for are in the range 0.8 to 0.9

 Surfer will teleport out of spider trap
within a few time steps

y

a m

y

a m

26

 Power Iteration:

▪ Set 𝑟𝑗 = 1

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 1/6 1/12 2/24 0

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2

Here the PageRank “leaks” out since the matrix is not stochastic.
27

27

 Teleports: Follow random teleport links with
probability 1.0 from dead-ends

▪ Adjust matrix accordingly

y

a m

y a m

y ½ ½ ⅓

a ½ 0 ⅓

m 0 ½ ⅓

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

y

a m

28

Why are dead-ends and spider traps a problem
and why do teleports solve the problem?
 Spider-traps are not a problem, but with traps

PageRank scores are not what we want

▪ Solution: Never get stuck in a spider trap by
teleporting out of it in a finite number of steps

 Dead-ends are a problem

▪ The matrix is not column stochastic, so our initial
assumptions are not met

▪ Solution: Make matrix column stochastic by always
teleporting when there is nowhere else to go

29

29

 Google’s solution that does it all:
At each step, random surfer has two options:

▪ With probability , follow a link at random

▪ With probability 1-, jump to some random page

 PageRank equation [Brin-Page, 98]

𝑟𝑗 =

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

di … out-degree
of node i

This formulation assumes that 𝑴 has no dead ends. We can either

preprocess matrix 𝑴 to remove all dead ends or explicitly follow random

teleport links with probability 1.0 from dead-ends.
30

30

31

y

a =

m

1/3

1/3

1/3

0.33

0.20

0.46

0.24

0.20

0.52

0.26

0.18

0.56

7/33

5/33

21/33

. . .

y

a
m

13/15

7/15

1/2 1/2 0

1/2 0 0

0 1/2 1

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

y 7/15 7/15 1/15

a 7/15 1/15 1/15

m 1/15 7/15 13/15

0.8 + 0.2

M [1/N]NxN

A

31

32

PageRank MapReduce
Implementation

32

33

Simplified PageRank

First, tackle the simple case:
No random jump factor

No dangling (dead end) nodes

33

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

n2 n4 n3 n5 n1 n2 n3n4 n5

n2 n4n3 n5n1 n2 n3 n4 n5

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

Map

Reduce

PageRank in MapReduce
n1

n4

n3
n5

n2

34

34

PageRank Pseudo-Code
class Mapper {

def map(id: Long, n: Node) = {
emit(id, n)
p = n.PageRank / n.adjacenyList.length
for (m <- n.adjacenyList) {

emit(m, p)
}

}

class Reducer {
def reduce(id: Long, objects: Iterable[Object]) = {
var s = 0
var n = null
for (p <- objects) {

if (isNode(p))
n = p

else
s += p

}
n.PageRank = s
emit(id, n)

}
} 35

35

Map

Reduce

PageRank BFS

PR/N d+1

sum min

PageRank vs. BFS

A large class of graph algorithms involve:
Local computations at each node

Propagating results: “traversing” the graph

36

36

Complete PageRank

Two additional complexities
What is the proper treatment of dangling nodes?

How do we factor in the random jump factor?

Solution: second pass to redistribute “missing PageRank mass”
and account for random jumps

One final optimization: fold into a single MR job

𝑟𝑗 =

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

37

37

Convergence?
reduce

map

HDFS

HDFS

map

HDFS

Implementation Practicalities

38

Optimization: fold into one MapReduce job

38

PageRank Convergence

Alternative convergence criteria
Iterate until PageRank values don’t change

Iterate until PageRank rankings don’t change
Fixed number of iterations

39

39

Log Probs
PageRank values are really small…

Product of probabilities = Addition of log probs

Addition of probabilities?

Solution?

40

40

Beyond PageRank

Variations of PageRank
Weighted edges

Personalized PageRank (A3/A4 ☺)

41

41

Convergence?
reduce

map

HDFS

HDFS

map

HDFS

Implementation Practicalities

42

42

MapReduce Sucks

Java verbosity

Hadoop task startup time

Stragglers

Needless graph shuffling

Checkpointing at each iteration

43

43

reduce

HDFS

…

map

HDFS

reduce

map

HDFS

reduce

map

HDFS

Let’s Spark!

44

44

reduce

HDFS

…

map

reduce

map

reduce

map

45

45

reduce

HDFS

map

reduce

map

reduce

map

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

…

46

46

join

HDFS

map

join

map

join

map

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

…

47

47

join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

48

48

join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

Cache!

49

49

PageRank	Performance	

17
1	

8
0
	

72
	

2
8
	

0	
20	
40	
60	
80	
100	
120	
140	
160	
180	

30	 60	

T
im

e
	p
e
r	
It
e
ra
ti
o
n
	(
s)
	

Number	of	machines	

Hadoop	

Spark	

Source: http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-zaharia-part-2-amp-camp-2012-standalone-programs.pdf

MapReduce vs. Spark

50

50

