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Structure of the Course

“Core” framework features 

and algorithm design
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uwaterloo.ca fakeuw.ca

University of waterloo University of 
waterloo University of waterloo University 

of waterloo  University of waterloo 
University of waterloo  University of 

waterloo University of waterloo 

Ranked retrieval fails!

Query: University of Waterloo
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 Web contains many sources of information
Who to “trust”?

▪ Trick: Trustworthy pages may point to each other!
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 All web pages are not equally “important”

www.joeschmoe.com vs. www.stanford.edu 

 There is large diversity 
in the web-graph 
node connectivity.
Let’s rank the pages by 
the link structure!
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 Idea: Links as votes

▪ Page is more important if it has more links

▪ In-coming links? Out-going links?

 Think of in-links as votes:
▪ www.stanford.edu has 23,400 in-links

▪ www.joeschmoe.com has 1 in-link

 Are all in-links equal?

▪ Links from important pages count more

▪ Recursive question! 
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10

 Each link’s vote is proportional to the 
importance of its source page

 If page j with importance rj has n out-links, 
each link gets rj / n votes

 Page j’s own importance is the sum of the 
votes on its in-links
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rj/3

rj/3rj/3
rj = ri/3+rk/4

ri/3 rk/4
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 Define a “rank” rj for page j
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“Flow” equations:

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

𝒅𝒊 … out-degree of node 𝒊

11

11



12

 3 equations, 3 unknowns, 
no constants
▪ No unique solution

▪ All solutions equivalent modulo the scale factor
 Additional constraint forces uniqueness:

▪ 𝒓𝒚 + 𝒓𝒂 + 𝒓𝒎 = 𝟏

▪ Solution: 𝒓𝒚 =
𝟐

𝟓
, 𝒓𝒂 =

𝟐

𝟓
, 𝒓𝒎 =

𝟏

𝟓
 Gaussian elimination method works for 

small examples, but we need a better 
method for large web-size graphs

 We need a new formulation!

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

Flow equations:
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 Stochastic adjacency matrix 𝑴
▪ Let page 𝑖 has 𝑑𝑖 out-links

▪ If 𝑖 → 𝑗, then  𝑀𝑗𝑖 =
1

𝑑𝑖

else   𝑀𝑗𝑖 = 0
▪ 𝑴 is a column stochastic matrix
▪ Columns sum to 1

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

y

ma
a/2

y/2
a/2

m

y/2
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 Power Iteration:

▪ Set 𝑟𝑗 = 1/N

▪ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ 2: 𝑟 = 𝑟′

▪ Goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2
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 Power Iteration:

▪ Set 𝑟𝑗 = 1/N

▪ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ 2: 𝑟 = 𝑟′

▪ Goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15

y

a m

y a m

y ½ ½ 0

a ½ 0 1

m 0 ½ 0

Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2
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 Imagine a random web surfer:

▪ At any time 𝒕, surfer is on some page 𝒊

▪ At time 𝒕 + 𝟏, the surfer follows an 
out-link from 𝒊 uniformly at random

▪ Ends up on some page 𝒋 linked from 𝒊

▪ Process repeats indefinitely
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17

 Imagine a random web surfer:

▪ At any time 𝒕, surfer is on some page 𝒊

▪ At time 𝒕 + 𝟏, the surfer follows an 
out-link from 𝒊 uniformly at random

▪ Ends up on some page 𝒋 linked from 𝒊

▪ Process repeats indefinitely

 Let:
 𝒑(𝒕) … vector whose 𝒊th coordinate is the 

prob. that the surfer is at page 𝒊 at time 𝒕

▪ So, 𝒑(𝒕) is a probability distribution over pages
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 Where is the surfer at time t+1?

▪ Follows a link uniformly at random

𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕)

 Suppose the random walk reaches a state 
𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕) = 𝒑(𝒕)

then 𝒑(𝒕) is stationary distribution of a random walk

)(M)1( tptp =+

j

i1 i2 i3
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 A central result from the theory of random 
walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, 
the stationary distribution is unique and 

eventually will be reached no matter what the 
initial probability distribution at time t = 0
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 Does this converge?

 Does it converge to what we want?

 Are results reasonable?
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 Example:
ra 1 0 1 0

rb 0 1 0 1
=

ba

Iteration 0, 1, 2, …
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 Example:
ra 1 0 0 0

rb 0 1 0 0
=

ba

Iteration 0, 1, 2, …
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2 problems:
 (1) Some pages are 

dead ends (have no out-links)

▪ Random walk has “nowhere” to go to

▪ Such pages cause importance to “leak out”

 (2) Spider traps:
(all out-links are within the group)

▪ Random walker gets “stuck” in a trap

▪ And eventually spider traps absorb all importance

Dead end
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 Power Iteration:

▪ Set 𝑟𝑗 = 1

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 3/6 7/12 16/24 1

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node m.
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 The Google solution for spider traps: At each 
time step, the random surfer has two options

▪ With prob. , follow a link at random

▪ With prob. 1-, jump to some random page

▪ Common values for  are in the range 0.8 to 0.9

 Surfer will teleport out of spider trap 
within a few time steps

y

a m

y

a m
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 Power Iteration:

▪ Set 𝑟𝑗 = 1

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 1/6 1/12 2/24 0

Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2

Here the PageRank “leaks” out since the matrix is not stochastic.
27

27



 Teleports: Follow random teleport links with 
probability 1.0 from dead-ends

▪ Adjust matrix accordingly

y

a m

y a m

y ½ ½ ⅓

a ½ 0 ⅓

m 0 ½ ⅓

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

y

a m
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Why are dead-ends and spider traps a problem 
and why do teleports solve the problem?
 Spider-traps are not a problem, but with traps 

PageRank scores are not what we want

▪ Solution: Never get stuck in a spider trap by 
teleporting out of it in a finite number of steps

 Dead-ends are a problem

▪ The matrix is not column stochastic, so our initial 
assumptions are not met

▪ Solution: Make matrix column stochastic by always 
teleporting when there is nowhere else to go
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 Google’s solution that does it all:
At each step, random surfer has two options:

▪ With probability ,  follow a link at random

▪ With probability 1-, jump to some random page

 PageRank equation [Brin-Page, 98]

𝑟𝑗 =

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁

di … out-degree 
of node i

This formulation assumes that 𝑴 has no dead ends.  We can either 

preprocess matrix 𝑴 to remove all dead ends or explicitly follow random 

teleport links with probability 1.0 from dead-ends.
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1/3 1/3 1/3

1/3 1/3 1/3

y   7/15  7/15   1/15

a   7/15  1/15   1/15

m  1/15  7/15  13/15

0.8 + 0.2

M [1/N]NxN

A
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PageRank MapReduce 
Implementation
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Simplified PageRank

First, tackle the simple case:
No random jump factor

No dangling (dead end) nodes
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n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

n2 n4 n3 n5 n1 n2 n3n4 n5

n2 n4n3 n5n1 n2 n3 n4 n5

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

Map

Reduce

PageRank in MapReduce
n1

n4

n3
n5

n2
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PageRank Pseudo-Code
class Mapper {

def map(id: Long, n: Node) = {
emit(id, n)
p = n.PageRank / n.adjacenyList.length
for (m <- n.adjacenyList) {

emit(m, p)
}

}

class Reducer {
def reduce(id: Long, objects: Iterable[Object]) = {
var s = 0
var n = null
for (p <- objects) {

if (isNode(p))    
n = p

else   
s += p

}
n.PageRank = s
emit(id, n)

}
} 35
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Map

Reduce

PageRank BFS

PR/N d+1

sum min

PageRank vs. BFS

A large class of graph algorithms involve:
Local computations at each node

Propagating results: “traversing” the graph
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Complete PageRank

Two additional complexities
What is the proper treatment of dangling nodes?

How do we factor in the random jump factor?

Solution: second pass to redistribute “missing PageRank mass” 
and account for random jumps

One final optimization: fold into a single MR job

𝑟𝑗 =

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁
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Convergence?
reduce

map

HDFS

HDFS

map

HDFS

Implementation Practicalities
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Optimization: fold into one MapReduce job
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PageRank Convergence

Alternative convergence criteria
Iterate until PageRank values don’t change

Iterate until PageRank rankings don’t change
Fixed number of iterations
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Log Probs
PageRank values are really small…

Product of probabilities = Addition of log probs

Addition of probabilities?

Solution?
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Beyond PageRank

Variations of PageRank
Weighted edges

Personalized PageRank (A3/A4 ☺)
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Convergence?
reduce

map

HDFS

HDFS

map

HDFS

Implementation Practicalities
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MapReduce Sucks

Java verbosity

Hadoop task startup time

Stragglers

Needless graph shuffling

Checkpointing at each iteration
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reduce

HDFS

…

map

HDFS

reduce

map

HDFS

reduce

map

HDFS

Let’s Spark!
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reduce

HDFS

…

map

reduce

map

reduce

map

45

45



reduce

HDFS

map

reduce

map

reduce

map

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

…
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join

HDFS

map

join

map

join

map

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

…
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join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

48

48



join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

Cache!
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PageRank	Performance	
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Source: http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-zaharia-part-2-amp-camp-2012-standalone-programs.pdf

MapReduce vs. Spark
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