

Data-Intensive Distributed Computing

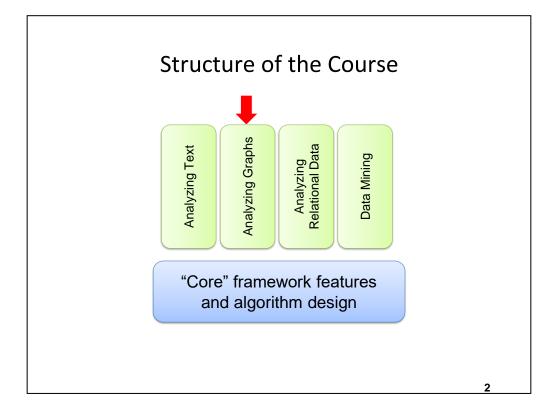
CS 431/631 451/651 (Fall 2021)

Part 5: Analyzing Graphs (2/2)

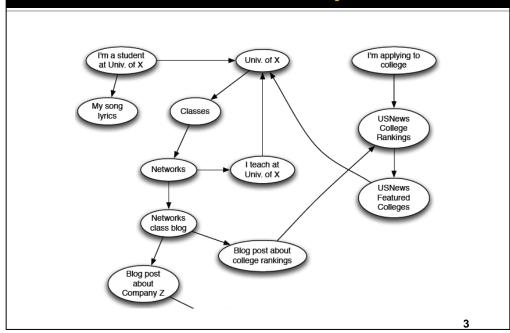
Ali Abedi

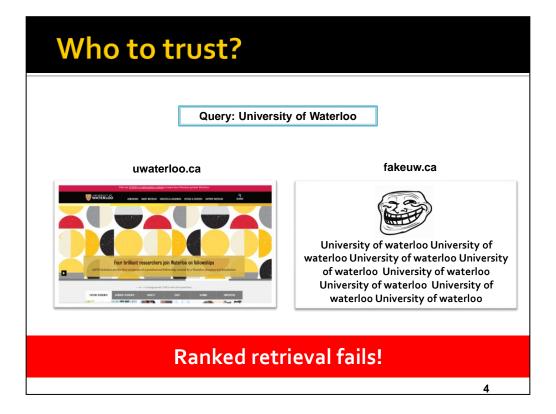
Thanks to Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University)

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451/



Web as a Directed Graph





Web Search Challenge

- Web contains many sources of information Who to "trust"?
 - Trick: Trustworthy pages may point to each other!

Ranking Nodes on the Graph

<text>

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

Links as Votes

Idea: Links as votes

- Page is more important if it has more links
 - In-coming links? Out-going links?

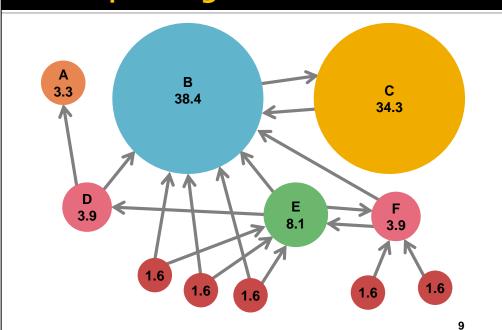
Think of in-links as votes:

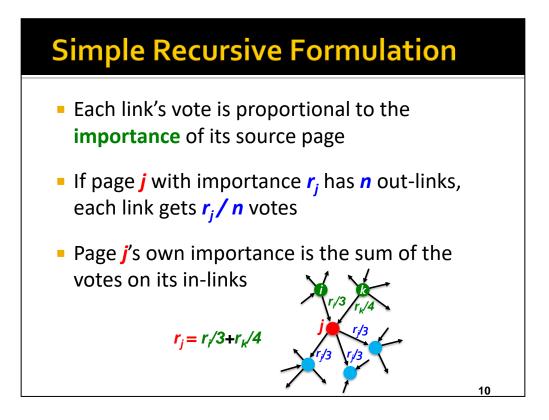
- www.stanford.edu has 23,400 in-links
- www.joeschmoe.com has 1 in-link

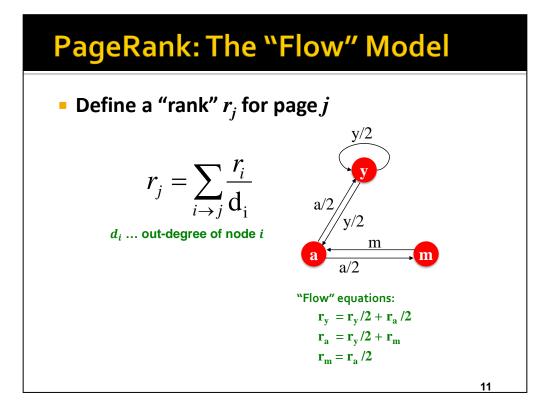
Are all in-links equal?

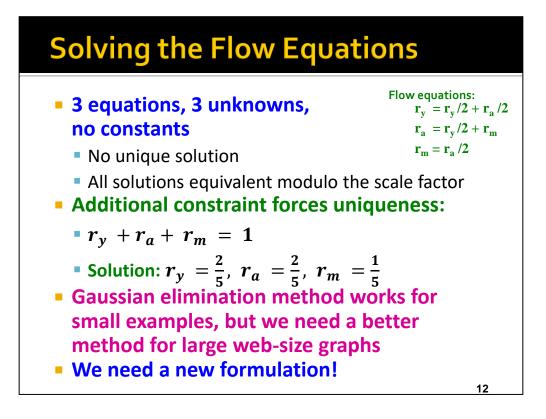
- Links from important pages count more
- Recursive question!

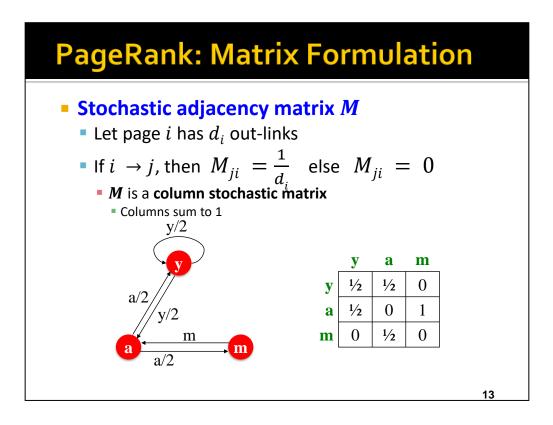
Example: PageRank Scores

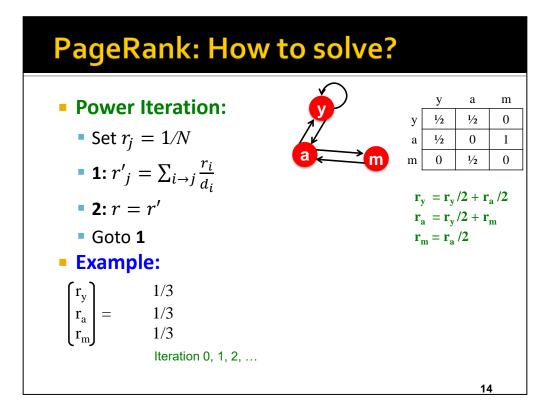


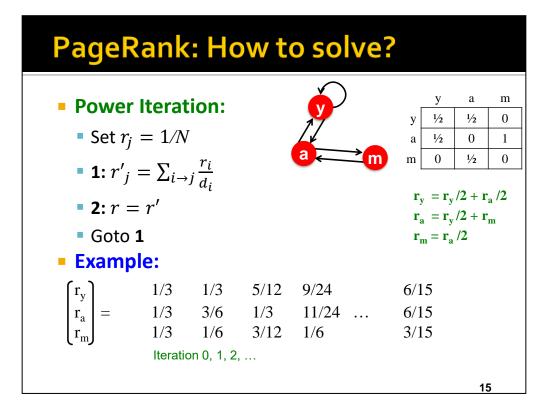








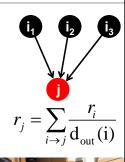




Random Walk Interpretation

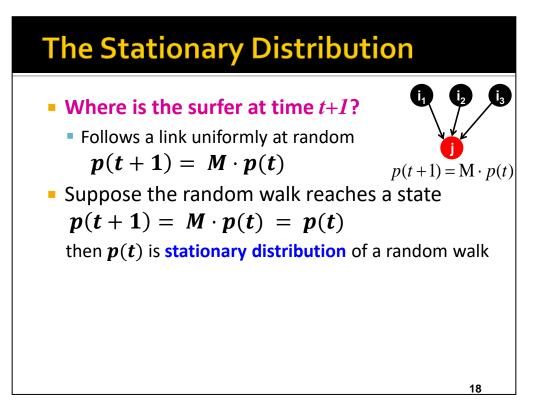
Imagine a random web surfer:

- At any time *t*, surfer is on some page *i*
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely



Random Walk Interpretation

Imagine a random web surfer: At any time *t*, surfer is on some page *i*At time *t* + 1, the surfer follows an out-link from *i* uniformly at random Ends up on some page *j* linked from *i*Process repeats indefinitely Let: *p*(*t*) ... vector whose *i*th coordinate is the prob. that the surfer is at page *i* at time *t*So, *p*(*t*) is a probability distribution over pages



Existence and Uniqueness

 A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy **certain conditions**, the **stationary distribution is unique** and eventually will be reached no matter what the initial probability distribution at time **t** = **0**

PageRank: The Google Formulation

PageRank: Three Questions

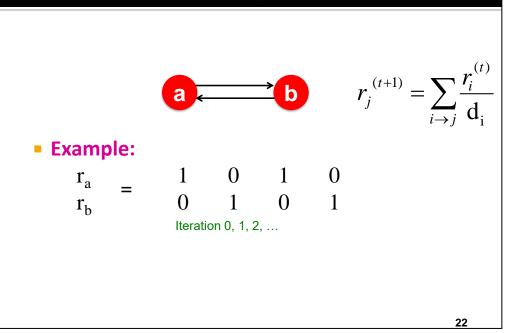
$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d}_i}$$

Does this converge?

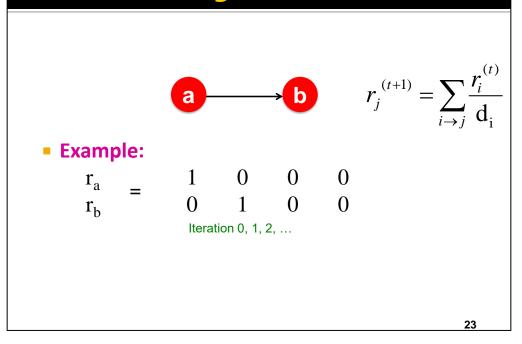
Does it converge to what we want?

Are results reasonable?

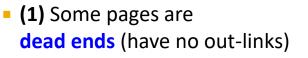
Does this converge?



Does it converge to what we want?



2 problems:



- Random walk has "nowhere" to go to
- Such pages cause importance to "leak out"

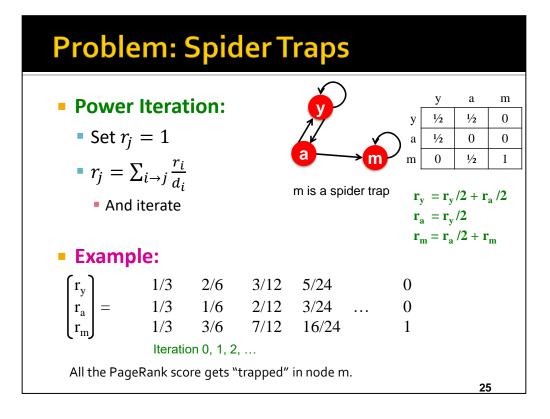
• (2) Spider traps:

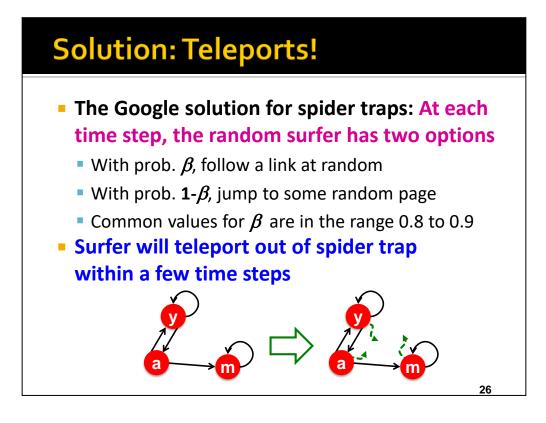
(all out-links are within the group)

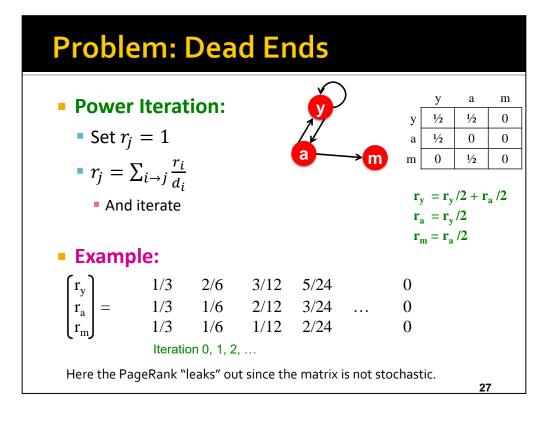
- Random walker gets "stuck" in a trap
- And eventually spider traps absorb all importance

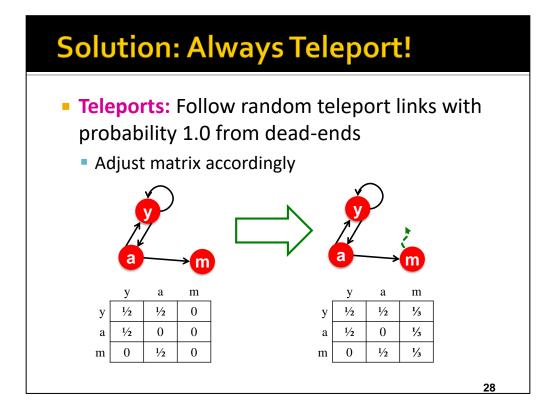
Dead end

Spider trap





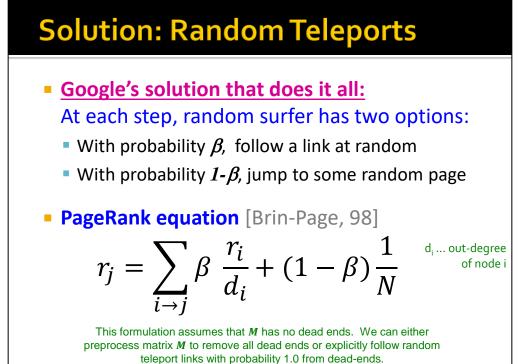


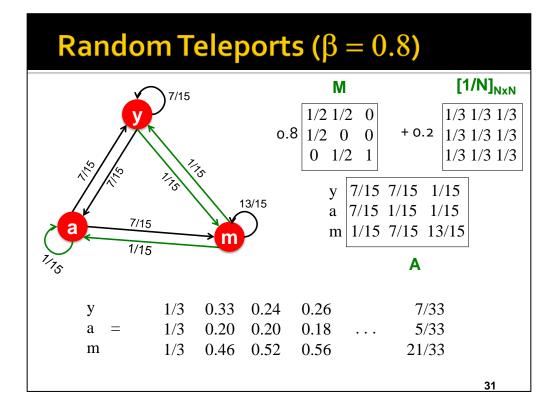


Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

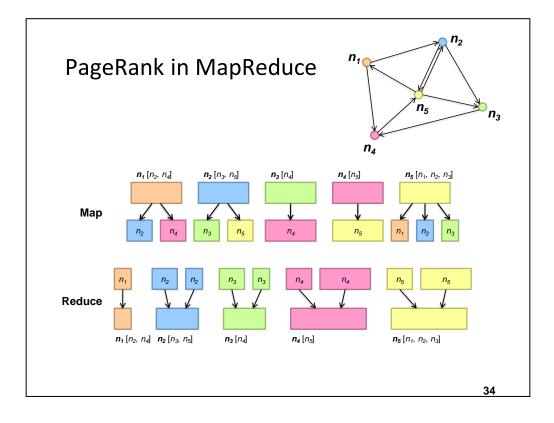
- Spider-traps are not a problem, but with traps PageRank scores are not what we want
 - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
 - The matrix is not column stochastic, so our initial assumptions are not met
 - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

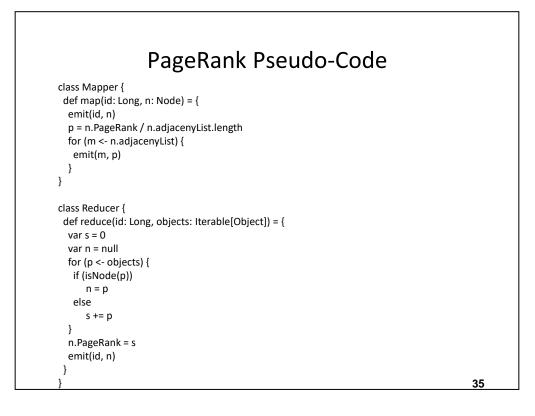




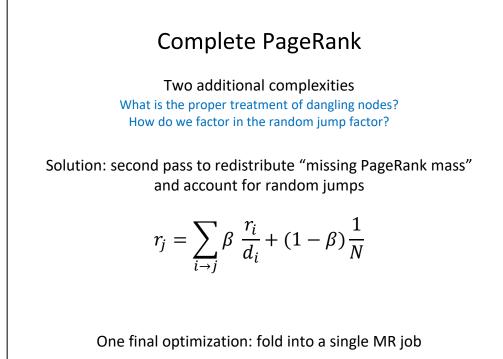
Simplified PageRank

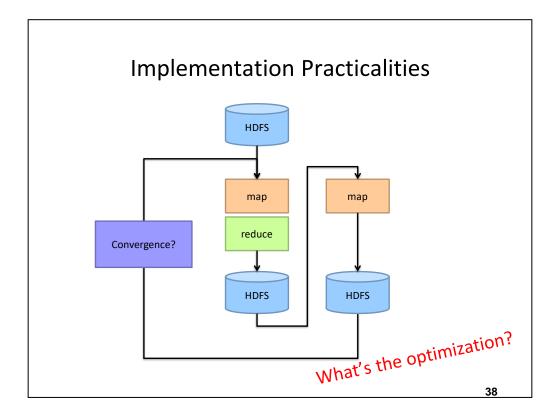
First, tackle the simple case: No random jump factor No dangling (dead end) nodes





PageRankBFSMapPR/Nd+1ReducesumminA large class of graph algorithms involve: Local computations at each node Propagating results: "traversing" the graph	PageRank vs. BFS				
Reduce sum min A large class of graph algorithms involve: Local computations at each node Propagating results: "traversing" the graph		PageRank	BFS		
A large class of graph algorithms involve: Local computations at each node Propagating results: "traversing" the graph	Мар	PR/N	d+1		
Local computations at each node Propagating results: "traversing" the graph	Reduce	sum	min		
	Local computations at each node Propagating results: "traversing" the graph				



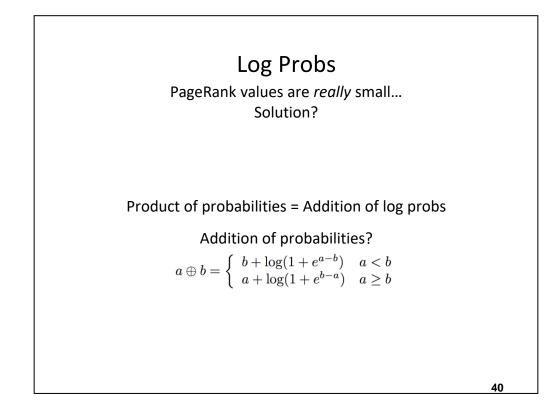


Optimization: fold into one MapReduce job

PageRank Convergence

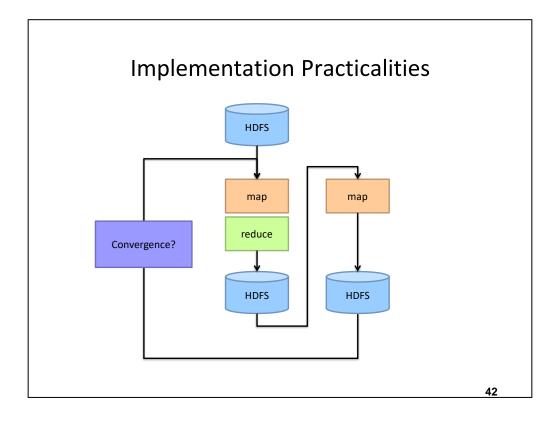
Alternative convergence criteria

Iterate until PageRank values don't change Iterate until PageRank rankings don't change Fixed number of iterations



Beyond PageRank

Variations of PageRank Weighted edges Personalized PageRank (A3/A4 ⓒ)



MapReduce Sucks

Java verbosity Hadoop task startup time Stragglers Needless graph shuffling Checkpointing at each iteration

Spark to the rescue?

