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Stochastic Gradient Descent
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Considers all training instances in every iteration
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Considers a random instance in every iteration
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Batch Stochastic

Gradient
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Mini-batching

Considers a random subset of instances in every iteration




Ensembles

Source: Wikipedia (Orchestra)



Ensemble Learning

Learn muﬂiple models, combine results from

differernodels to make prediction

Common implementation:
Train classifiers on different input partitions of the data
Embarrassingly parallel!

Combining predictions:
Majority voting
Model averaging




Ensemble Learning

Learn muﬂiple models, combine results from

differernodels to make prediction

Why does it work?
If errors uncorrelated, multiple classifiers being wrong is less likely
Reduces the variance component of error







MapReduce Implementation
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Stochastic Gradient Descent
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No iteration!
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This is great because we no longer need iterations!

Mappers go through the record and apply the stochastic gradient descend rule on

that record and update the model. This process continues for all records
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Stochastic Gradient Descent
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No iteration!
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MapReduce Implementation
0T 0 —OIVL(f(x;607),y)

How do we output the model?
Option 1: write model out as “side data”
Option 2: emit model as intermediate output

15

15



What about Spark?
9t+1) . gt) _ fy(t)VE(f(X; 9<t))7 Y)
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mapPartitions
f: (Iterator[T])
= Iterator[U]

l learner

RDD[U]
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In practice ...

Data scientists usually use provided transformations in Spark ML
val model = LinearRegressionWithSGD.train(parsedData, numlterations, stepSize)

val prediction = model.predict(point.features)
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Sentiment Analysis Case Study

Binary polarity classification: {positive, negative} sentiment
Use the “ i ick” h ==
o, . se the “emoticon trick” to gather data (o = PP
ﬁ W
Data

Test: 500k positive/500k negative tweets from 9/1/2011
Training: {1m, 10m, 100m} instances from before (50/50 split)

Features:
Sliding window byte-4grams

Models + Optimization:
Logistic regression with SGD (L2 regularization)
Ensembles of various sizes (simple weighted voting)
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Source: Lin and Kolcz. (2012) Large-Scale Machine Learning at Twitter. SIGMOD.
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Accuracy

Diminishing returns...
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Supervised Machine Learning

training 1 testing/deployment

N

Machine Learning Algorithm
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Evaluation
How do we know how well we’re doing?

Why isn’t this enough?
Induce: f: X - Y

Such that loss is minimized

S
argmin ;f(f(xu 0).y:)

We need end-to-end metrics!
Obvious metric: accuracy

Why isn’t this enough?
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Predicted

Positive

Negative

Metrics

Actual
Positive Negative
True Positive False Positive Precision
(TP) (FP) =TP/(TP +FP)
=Type 1 Error
False Negative True Negative Miss rate
(FN) (TN) =FN/(FN +TN)
=Type Il Error
Recall or TPR Fall-Out or FPR
=TP/(TP + FN) =FP/(FP + TN)
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Type I error
(false positive)

Type II error
(false negative)

. ‘pregnant i

Y.

;You’re notn"
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ROC and PR Curves
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Source: Davis and Goadrich. (2006) The Relationship Between Precision-Recall and ROC curves

Areceiver operating characteristic curve, or ROC curve, is a graphical plot that
illustrates the diagnostic ability of a binary classifier system as its discrimination
threshold is varied.



Training/Testing Splits

Training
S x eyvy’b)
ot U
axgmaﬂ n
Test | precision recall,
elc.

What happens if you need more?

Cross-Validation
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Training/Testing Splits

Cross-Validation
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Training/Testing Splits

Cross-Validation
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Training/Testing Splits

Cross-Validation
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Training/Testing Splits

Cross-Validation
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Training/Testing Splits

Cross-Validation
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Typical Industry Setup

time R
A/B test
Training Test
1datio
n not Cross” al
Wwhy
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A/B Testing

X% 100 - X %

Control Treatment

Gather metrics, compare alternatives
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A/B Testing: Complexities

Properly bucketing users
Novelty
Learning effects
Long vs. short term effects
Multiple, interacting tests

Nosy tech journalists
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Supervised Machine Learning

training 1 testing/deployment

N

Machine Learning Algorithm
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Applied ML in Academia

Download interesting dataset (comes with the problem)

Run baseline model
Train/Test

Build better model
Train/Test

Does new model beat baseline?

Yes: publish a paper!
No: try again!
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THE SCIENTIFIC METHOD |

www.phdcomics.com

Modify JORGE CHAM ©) 2006
Hypothesis <

Observe natural Formulate Test hypothesis 5 Establish Theory
> Hypothesis > via rigorous based on repeated

phenomena

|IHE ACTUAL METHOD |

Make up Theory
llz_las%t_:i nr':A what

unding Agency
Manager wants
to be tfrue

Experiment validation of results
Madify Theo
| > to fit gata v
Design minimum Publish Paper: Defend Theory
experiments that = rename Theorya — = despite all
will prove shew? “Hypothesis” and evidence to the
suggest Theory pretend you used contrary
is frue the Scientific
Method

36

36



© 2013 Ted Goff

“You can’t keep adjusting the data
to prove that you would be the best
Valentine’s date for Scarlett Johansson.”
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Data Scientist: The
Sexiest Job of the 21st
Century

by Thomas H. Davenport and D.J. Patil

38

38



Fantasy

#EExtract features

#*Develop cool ML
technique

2 H#Profit

Dirty secret: very li
about machine

Reality

**What’s the task?
*“'Where’s the data?
**'What’s in this dataset?
*'What’s all the f#S!* crap?
**'Clean the data

** Extract features

** “Do” machine learning
**'Fail, iterate...

ttle of data science 1S
learning per sel
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What my friends think | do

What my boss thinks | do

Data Scientist

What | think | do

SELECT spending
FROM db.users

What | actually do
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" Sour€er Wikipedia (Jujitsu)

It’s impossible to overstress this: 80% of
the work in any data project is in cleaning
the data. — DJ Patil “Data Jujitsu”
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On flndlng things

«

B p. Oscar Boykin
OH:"... SO to recab, rweets are statuses,
S, retweels are

favorites are favouringd
shares.

43

43



CamelCase
smallCamelCase
snake_case
camel_Snake

dunder__snake

On naming things...

uid Useryy
userld
userid
user_id user_jq
5 o Grana™
B Conoere in
B
crerddy Xha'\n our
C‘&me /\,\\e’ ieafe RXL
ac?‘ixsw‘m&o( ot
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On feature extraction...

AN\WH\\s+H\\d+\\s+\\d+:\\d+:\\d+)\\s+
([*@]+?) @ (\\S+)\\s+(\\S+):\\s+(\\S+)\\s+(\\S+)
\\s+((2:\\S+2,\\s+)*(?:\\S+2))\\s+(\\S+)\\s+(\\S+)
A\SHNLCANNTHNINSH (Ww+)\\s+([ AN\
AN NN N\ +H(WSHN \N\s+(\\S+)\\s+
(NSENNSH (AN * (2NN AN *)*)
\"WSH (AN NN (AN AW ) N \\s *
(\\d*-[\\d-1*)2\\s*(\\d+) \\s* (\\d*\\.[\\d\\.]*)?
(\\s+[-\\w]+)?.*$

An actual Java regular expression used to parse log
message at Twitter circa 2010

Friction is cumulative!
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Data Plumblr.tgw..‘.‘

[scene: consumer internet company in the Bay Area...]

[ It’s over here...

[ Well, it wouldn’t fit, so we had to shoehorn...

[ Hang on, | don’t remember... ]

[ Uh, bad news. Looks like we forgot to log it...

Frontend Engineer
Develops new feature, adds
logging code to capture clicks

Okay, let’s get going... where’s the click data?

Well, that’s kinda non-intuitive, but okay...

Oh, BTW, where’s the timestamp of the click?

[grumble, grumble, grumble]

Data Scientist
Analyze user behavior, extract
insights to improve feature 46
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Fantasy

2 Extract features

#2Develop cool ML
technique

2 HProfit

Reality

**What’s the task?
““'Where’s the data?
**'What’s in this dataset?

**' What’s all the f#S!* crap?
**'Clean the data

** Extract features

** “Do” machine learning

“'Fail, iterate...

Finally works!
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Souire’ Wikipedia (Hills) .
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Congratulations, you’re halfway there...

Does it actually work?
A/B testing

Is it fast enough?

Good, you’re two thirds there...
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Source: Wikipedia (Oil refinery)
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Productionize

What are your jobs’ dependencies?
How/when are your jobs scheduled?
Are there enough resources?
How do you know if it’s working?

Who do you call if it stops working?

Infrastructure is critical here!
(plumbing)
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Source: Wikipedia (Plumbing)

Most of data scie\nce lisn‘tglamorous!
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