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 Given a cloud of data points we want to 
understand its structure
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 Given a set of points, with a notion of distance
between points, group the points into some 
number of clusters, so that 

▪ Members of a cluster are close/similar to each other

▪ Members of different clusters are dissimilar

 Usually:

▪ Points are in a high-dimensional space

▪ Similarity is defined using a distance measure

▪ Euclidean, Cosine, Jaccard, edit distance, …

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

3



4

x        x

x  x      x  x

x   x x  x     

x     x  x

x   x

x

xx    x

x  x        

x    x  x   

x

x x   x

x

x   x

x  x    x    x

x    x     x

x  

x

x

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

x        x

x  x      x  x

x   x x  x     

x     x  x

x   x

x

xx    x

x  x

x    x x

x

x x x

x

x   x

x  x    x    x

x    x     x

x  

Outlier Cluster

4



J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 5

5



6

 Clustering in two dimensions looks easy
 Clustering small amounts of data looks easy
 And in most cases, looks are not deceiving

 Many applications involve not 2, but 10 or 
10,000 dimensions

 High-dimensional spaces look different: 
Almost all pairs of points are at about the 
same distance
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 A catalog of 2 billion “sky objects” represents 
objects by their radiation in 7 dimensions 
(frequency bands)

 Problem: Cluster into similar objects, e.g., 
galaxies, nearby stars, quasars, etc.

 Sloan Digital Sky Survey
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 Intuitively: Music divides into categories, and 
customers prefer a few categories

▪ But what are categories really?

 Represent a CD by a set of customers who 
bought it:

 Similar CDs have similar sets of customers, 
and vice-versa
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Space of all CDs:
 Think of a space with one dim. for each 

customer

▪ Values in a dimension may be 0 or 1 only

▪ A CD is a point in this space (x1, x2,…, xk), 
where xi = 1 iff the i th customer bought the CD

 For Amazon, the dimension is tens of millions

 Task: Find clusters of similar CDs
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Finding topics:
 Represent a document by a vector  

(x1, x2,…, xk), where xi = 1 iff the i th word 
(in some order) appears in the document

▪ It actually doesn’t matter if k is infinite; i.e., we 
don’t limit the set of words

 Documents with similar sets of words 
may be about the same topic
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 As with CDs we have a choice when we 
think of documents as sets of words or 
shingles:

▪ Sets as vectors: Measure similarity by the 
cosine distance

▪ Sets as sets: Measure similarity by the 
Jaccard distance

▪ Sets as points: Measure similarity by 
Euclidean distance
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 Hierarchical:

▪ Agglomerative (bottom up):

▪ Initially, each point is a cluster

▪ Repeatedly combine the two 
“nearest” clusters into one

▪ Divisive (top down):

▪ Start with one cluster and recursively split it

 Point assignment:

▪ Maintain a set of clusters

▪ Points belong to “nearest” cluster
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 Key operation: 
Repeatedly combine 
two nearest clusters

 Three important questions:

▪ 1) How do you represent a cluster of more 
than one point?

▪ 2) How do you determine the “nearness” of 
clusters?

▪ 3) When to stop combining clusters?
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 Key operation: Repeatedly combine two 
nearest clusters

 (1) How to represent a cluster of many points?

▪ Key problem: As you merge clusters, how do you 
represent the “location” of each cluster, to tell which 
pair of clusters is closest?

 Euclidean case: each cluster has a 
centroid = average of its (data)points

 (2) How to determine “nearness” of clusters?

▪ Measure cluster distances by distances of centroids
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What about the Non-Euclidean case?
 The only “locations” we can talk about are the 

points themselves

▪ i.e., there is no “average” of two points

 Approach 1:

▪ (1) How to represent a cluster of many points?
clustroid = (data)point “closest” to other points

▪ (2) How do you determine the “nearness” of 
clusters? Treat clustroid as if it were centroid, when 
computing inter-cluster distances
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 (1) How to represent a cluster of many points?
clustroid = point “closest” to other points

 Possible meanings of “closest”:

▪ Smallest maximum distance to other points

▪ Smallest average distance to other points

▪ Smallest sum of squares of distances to other points

▪ For distance metric d clustroid c of cluster C is:
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 (2) How do you determine the “nearness” of 
clusters? 

▪ Approach 2:
Intercluster distance = minimum of the distances 
between any two points, one from each cluster

▪ Approach 3:
Pick a notion of “cohesion” of clusters, e.g., 
maximum distance from the clustroid

▪ Merge clusters whose union is most cohesive
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 Approach 3.1: Use the diameter of the 
merged cluster = maximum distance between 
points in the cluster

 Approach 3.2: Use the average distance
between points in the cluster

 Approach 3.3: Use a density-based approach

▪ Take the diameter or avg. distance, e.g., and divide 
by the number of points in the cluster
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 Naïve implementation of hierarchical 
clustering:

▪ At each step, compute pairwise distances 
between all pairs of clusters, then merge

▪ O(N3)

 Careful implementation using priority queue 
can reduce time to O(N2 log N)

▪ Still too expensive for really big datasets 
that do not fit in memory
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 Assumes Euclidean space/distance

 Start by picking k, the number of clusters

 Initialize clusters by picking one point per 
cluster

▪ Example: Pick one point at random, then  k-1 
other points, each as far away as possible from 
the previous points
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 1) For each point, place it in the cluster whose 
current centroid it is nearest

 2) After all points are assigned, update the 
locations of centroids of the k clusters

 3) Reassign all points to their closest centroid
▪ Sometimes moves points between clusters

 Repeat 2 and 3 until convergence
▪ Convergence: Points don’t move between clusters 

and centroids stabilize
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How to select k?
 Try different k, looking at the change in the 

average distance to centroid as k increases
 Average falls rapidly until right k, then 

changes little
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Basic MapReduce Implementation

class Mapper  {
def setup() = {

clusters = loadClusters()
}

def map(id: Int, vector: Vector) = {
emit(clusters.findNearest(vector), vector)

}
}

class Reducer {
def reduce(clusterId: Int, values: Iterable[Vector]) = {

for (vector <- values) {
sum += vector
cnt += 1

}
emit(clusterId, sum/cnt)

}
}
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