
Data-Intensive Distributed Computing

Part 6: Data Mining (4/4)

CS 431/631 451/651 (Fall 2021)

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451

1

Thanks to Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University)

1

 Given a cloud of data points we want to
understand its structure

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 2

2

3

 Given a set of points, with a notion of distance
between points, group the points into some
number of clusters, so that

▪ Members of a cluster are close/similar to each other

▪ Members of different clusters are dissimilar

 Usually:

▪ Points are in a high-dimensional space

▪ Similarity is defined using a distance measure

▪ Euclidean, Cosine, Jaccard, edit distance, …

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

3

4

x x

x x x x

x x x x

x x x

x x

x

xx x

x x

x x x

x

x x x

x

x x

x x x x

x x x

x

x

x

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

x x

x x x x

x x x x

x x x

x x

x

xx x

x x

x x x

x

x x x

x

x x

x x x x

x x x

x

Outlier Cluster

4

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 5

5

6

 Clustering in two dimensions looks easy
 Clustering small amounts of data looks easy
 And in most cases, looks are not deceiving

 Many applications involve not 2, but 10 or
10,000 dimensions

 High-dimensional spaces look different:
Almost all pairs of points are at about the
same distance

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

6

 A catalog of 2 billion “sky objects” represents
objects by their radiation in 7 dimensions
(frequency bands)

 Problem: Cluster into similar objects, e.g.,
galaxies, nearby stars, quasars, etc.

 Sloan Digital Sky Survey

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 7

7

 Intuitively: Music divides into categories, and
customers prefer a few categories

▪ But what are categories really?

 Represent a CD by a set of customers who
bought it:

 Similar CDs have similar sets of customers,
and vice-versa

8J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

8

Space of all CDs:
 Think of a space with one dim. for each

customer

▪ Values in a dimension may be 0 or 1 only

▪ A CD is a point in this space (x1, x2,…, xk),
where xi = 1 iff the i th customer bought the CD

 For Amazon, the dimension is tens of millions

 Task: Find clusters of similar CDs

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 9

9

Finding topics:
 Represent a document by a vector

(x1, x2,…, xk), where xi = 1 iff the i th word
(in some order) appears in the document

▪ It actually doesn’t matter if k is infinite; i.e., we
don’t limit the set of words

 Documents with similar sets of words
may be about the same topic

10J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

10

 As with CDs we have a choice when we
think of documents as sets of words or
shingles:

▪ Sets as vectors: Measure similarity by the
cosine distance

▪ Sets as sets: Measure similarity by the
Jaccard distance

▪ Sets as points: Measure similarity by
Euclidean distance

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 11

11

12

 Hierarchical:

▪ Agglomerative (bottom up):

▪ Initially, each point is a cluster

▪ Repeatedly combine the two
“nearest” clusters into one

▪ Divisive (top down):

▪ Start with one cluster and recursively split it

 Point assignment:

▪ Maintain a set of clusters

▪ Points belong to “nearest” cluster

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

12

 Key operation:
Repeatedly combine
two nearest clusters

 Three important questions:

▪ 1) How do you represent a cluster of more
than one point?

▪ 2) How do you determine the “nearness” of
clusters?

▪ 3) When to stop combining clusters?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 13

13

 Key operation: Repeatedly combine two
nearest clusters

 (1) How to represent a cluster of many points?

▪ Key problem: As you merge clusters, how do you
represent the “location” of each cluster, to tell which
pair of clusters is closest?

 Euclidean case: each cluster has a
centroid = average of its (data)points

 (2) How to determine “nearness” of clusters?

▪ Measure cluster distances by distances of centroids

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 14

14

15

(5,3)

o

(1,2)

o

o (2,1) o (4,1)

o (0,0) o (5,0)

x (1.5,1.5)

x (4.5,0.5)

x (1,1)

x (4.7,1.3)

Data:

o … data point

x … centroid
Dendrogram

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

15

What about the Non-Euclidean case?
 The only “locations” we can talk about are the

points themselves

▪ i.e., there is no “average” of two points

 Approach 1:

▪ (1) How to represent a cluster of many points?
clustroid = (data)point “closest” to other points

▪ (2) How do you determine the “nearness” of
clusters? Treat clustroid as if it were centroid, when
computing inter-cluster distances

16J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

16

 (1) How to represent a cluster of many points?
clustroid = point “closest” to other points

 Possible meanings of “closest”:

▪ Smallest maximum distance to other points

▪ Smallest average distance to other points

▪ Smallest sum of squares of distances to other points

▪ For distance metric d clustroid c of cluster C is:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 17

Cx

c
cxd 2),(min

Centroid is the avg. of all (data)points

in the cluster. This means centroid is

an “artificial” point.

Clustroid is an existing (data)point

that is “closest” to all other points in

the cluster.

X

Cluster on

3 datapoints

Centroid

Clustroid

Datapoint

17

 (2) How do you determine the “nearness” of
clusters?

▪ Approach 2:
Intercluster distance = minimum of the distances
between any two points, one from each cluster

▪ Approach 3:
Pick a notion of “cohesion” of clusters, e.g.,
maximum distance from the clustroid

▪ Merge clusters whose union is most cohesive

18J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

18

 Approach 3.1: Use the diameter of the
merged cluster = maximum distance between
points in the cluster

 Approach 3.2: Use the average distance
between points in the cluster

 Approach 3.3: Use a density-based approach

▪ Take the diameter or avg. distance, e.g., and divide
by the number of points in the cluster

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 19

19

 Naïve implementation of hierarchical
clustering:

▪ At each step, compute pairwise distances
between all pairs of clusters, then merge

▪ O(N3)

 Careful implementation using priority queue
can reduce time to O(N2 log N)

▪ Still too expensive for really big datasets
that do not fit in memory

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 20

20

21

 Assumes Euclidean space/distance

 Start by picking k, the number of clusters

 Initialize clusters by picking one point per
cluster

▪ Example: Pick one point at random, then k-1
other points, each as far away as possible from
the previous points

22J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

22

 1) For each point, place it in the cluster whose
current centroid it is nearest

 2) After all points are assigned, update the
locations of centroids of the k clusters

 3) Reassign all points to their closest centroid
▪ Sometimes moves points between clusters

 Repeat 2 and 3 until convergence
▪ Convergence: Points don’t move between clusters

and centroids stabilize

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 23

23

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 24

x

x

x

x

x

x

x x

x … data point

… centroid

x

x

x

Clusters after round 1

24

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 25

x

x

x

x

x

x

x x

x … data point

… centroid

x

x

x

Clusters after round 2

25

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 26

x

x

x

x

x

x

x x

x … data point

… centroid

x

x

x

Clusters at the end

26

How to select k?
 Try different k, looking at the change in the

average distance to centroid as k increases
 Average falls rapidly until right k, then

changes little

27

k

Average

distance to

centroid

Best value

of k

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

27

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 28

x x

x x x x

x x x x

x x x

x x

x

xx x

x x

x x x

x

x x x

x

x x

x x x x

x x x

x

x

x

Too few;

many long

distances

to centroid.

28

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 29

x x

x x x x

x x x x

x x x

x x

x

xx x

x x

x x x

x

x x x

x

x x

x x x x

x x x

x

x

x

Just right;

distances

rather short.

29

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 30

x x

x x x x

x x x x

x x x

x x

x

xx x

x x

x x x

x

x x x

x

x x

x x x x

x x x

x

x

x

Too many;

little improvement

in average

distance.

30

Basic MapReduce Implementation

class Mapper {
def setup() = {

clusters = loadClusters()
}

def map(id: Int, vector: Vector) = {
emit(clusters.findNearest(vector), vector)

}
}

class Reducer {
def reduce(clusterId: Int, values: Iterable[Vector]) = {

for (vector <- values) {
sum += vector
cnt += 1

}
emit(clusterId, sum/cnt)

}
}

31

