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What'’s the selling point of SQL-on-Hadoop?
Trade (a little?) performance for flexibility

“Data Lake” Data Warehouse
Other SQL on “Traditional”
tools Hadoop Bl tools

data scientists




SQL-on-Hadoop

: Spcnr‘l'g sQL

II’

Today: How all of this works...




Hive: Example

Relational join on two tables:

Table of word counts from Shakespeare collection
Table of word counts from the bible

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

the 25848 62394
I 23031 8854
and 19671 38985
to 18038 13526
of 16700 34654
a 14170 8057
you 12702 2720
my 11297 4135
in 10797 12445
is 8882 6884

Source: Material drawn from Cloudera training VM




Hive: Behind the Scenes

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

(Abstract Syntax Tree)

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. (TOK_TABLE_OR_COL s)
word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT
(TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR (.
(TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) (>= (. (TOK_TABLE_OR_COL k)
freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. (TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)




STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-2 depends on stages: Stage-1
Stage-0 is a root stage

STAGE PLANS:
Stage: Stage-1
Map Reduce
Alias -> Map Operator Tree:

s
TableScan
alias: s
Filter Operator
predicate:
expr (freq >= 1)
type: boolean
Reduce Output Operator
key expressions:

Map-reduce partition columns:
expr: word
type: string

value expressions:

type: int
expr: word
type: string

TableScan
alias: k
Filter Operator
predicate:
expr: (freq >= 1)
type: boolean
Reduce Output Operator
key expressions:
expr: word
type: string
sort order: +
Map-reduce partition columns:
expr: wort
type: string
value expressions:

expr: freq
type: int

Hive: Behind the Scenes

Stage: Stage-2
Map Reduce
Alias -> Map Operator Tree:

14370/10002
Reduce Output Operator

key expressions:
expr: _coll
type: int
sort order: -
tag: -
value expressions:
expr: _cold
type: string
expr: _coll
type: int
expr: _col2
type: int
Reduce Operator Tree:
Extract
Reduce Operator Tree: Limit
Join Operator File Output Operator
condition map: compressed: false
Inner Join O to 1 GlobalTableld: 0
condition expressions: table:
0 {VALUE._col0} {VALUE._col1}
1 {VALUE._col0}
outputColumnNames: _col0, _col1, _col2
Filter Operator
predicate:
expr: ((_col0 >= 1) and (_col2 >= 1))
type: boolean
Select Operator
expressions:
expr: _coll
type: string
expr: _col0
type: int
expr: _col2
type: int
outputColumnNames: _col0, _col1, _col2
File Output Operator
compressed: false
GlobalTableld: 0
table:

input format: org.apache. hadoop.mapred. SequenceFileinputFormat
output format: org.apache.hadoop. hive.ql.io. HiveSequenceFileOutputFormat

input format: org.apache. hadoop.mapred. TextinputFormat
output format: org.apache. hadoop.hive.ql.io. HivelgnoreKeyTextOutputFormat

Stage: Stage-0
Fetch Operator
limit: 10




Hive Architecture

HIVE

Driver
(Compiler, Optimizer, Executor)

HADOOP
(MAP-REDUCE + HDFS)




Hive Implementation

Metastore holds metadata
Tables schemas (field names, field types, etc.) and encoding
Permission information (roles and users)

Hive data stored in HDFS
Tables in directories
Partitions of tables in sub-directories
Actual data in files (plain text or binary encoded) )

r bug:
Fea’(\,\ree% SQL—O“‘Hadoom

C
(ehis 1 the es€"

This is actually a good feature because when we want to execute a query we can
only read needed files (disk optimization)
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Relational Algebra

Primitives
Projection ()
Selection (o)
Cartesian product (x)
Set union (V)
Set difference (-)

Rename (p)

Other Operations
Join (™)
Group by... aggregation
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Selection
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Selection in MapReduce

Easy!
In mapper: process each tuple, only emit tuples that meet criteria
Can be pipelined with projection
No reducers necessary (unless to do something else)

Performance mostly limited by HDFS throughput
Speed of encoding/decoding tuples becomes important
Take advantage of compression when available
Semistructured data? No problem!
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Projection
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Projection in MapReduce

Easy!
In mapper: process each tuple, re-emit with only projected attributes
Can be pipelined with selection
No reducers necessary (unless to do something else)

Implementation detail: bookkeeping required
Need to keep track of attribute mappings after projection
e.g., name was r[4], becomes r[1] after projection

Performance mostly limited by HDFS throughput
Speed of encoding/decoding tuples becomes important
Take advantage of compression when available
Semistructured data? No problem!
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Group by... Aggregation

Aggregation functions:
AVG, MAX, MIN, SUM, COUNT, ...

MapReduce implementation:

Map over dataset, emit tuples, keyed by group by attribute
Framework automatically groups values by group by attribute
Compute aggregation function in reducer
Optimize with combiners, in-mapper combining

is!
You already know how to do this
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1c?
member t\h‘s' i i
ReME Geek2 Combiner Design

Combiners and reducers share same method signature

Sometimes, reducers can serve as combiners
Often, not...

Remember: combiner are optional optimizations
Should not affect algorithm correctness
May be run 0, 1, or multiple times

Example: find average of integers associated with the same key

SELECT key, AVG(value) FROM r GROUP BY key;
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Computing the Mean: Version 1

class Mapper {
def map(key: Text, value: Int, context: Context) = {
context.write(key, value)
}
}

class Reducer {
def reduce(key: Text, values: Iterable[Int], context: Context) {
for (value <- values) {
sum += value
cnt+=1
}
context.write(key, sum/cnt)
}
}
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Computing the Mean: Version 2

class Mapper {
def map(key: Text, value: Int, context: Context) =
context.write(key, value)
}
class Combiner {
def reduce(key: Text, values: Iterable[Int], context: Context) = {
for (value <- values) {
sum += value
cnt+=1
}
context.write(key, (sum, cnt))
}
}
class Reducer {
def reduce(key: Text, values: Iterable[Pair], context: Context) = {
for (value <- values) {
sum += value.left
cnt += value.right
}
context.write(key, sum/cnt)
}
}
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Computing the Mean: Version 3

class Mapper {
def map(key: Text, value: Int, context: Context) =
context.write(key, (value, 1))
}
class Combiner {
def reduce(key: Text, values: Iterable[Pair], context: Context) = {
for (value <- values) {
sum += value.left
cnt += value.right
}
context.write(key, (sum, cnt))
}
}
class Reducer {
def reduce(key: Text, values: Iterable[Pair], context: Context) = {
for (value <- values) {
sum += value.left
cnt += value.right
}
context.write(key, sum/cnt)
}
}
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Computing the Mean: Version 4

class Mapper {
val sums = new HashMap()
val counts = new HashMap()

def map(key: Text, value: Int, context: Context) = {
sums(key) += value
counts(key) += 1

}

def cleanup(context: Context) = {
for (key <- counts) {
context.write(key, (sums(key), counts(key)))
}
}
}
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Relational Joins
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(More precisely, an inner join)
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Types of Relationships

>

Many-to-Many One-to-Many One-to-One

/Al
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Join Algorithms in MapReduce

Reduce-side join
aka repartition join
aka shuffle join

Map-side join
aka sort-merge join

Hash join
aka broadcast join
aka replicated join
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Reduce-side Join
aka repartition join, shuffle join

Basic idea: group by join key
Map over both datasets
Emit tuple as value with join key as the intermediate key
Execution framework brings together tuples sharing the same key
Perform join in reducer

Two variants

1-to-1 joins
1-to-many and many-to-many joins
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Reduce-side Join: 1-to-1
Map

keys values

- Ry
S e ad M

Remember 10 “tag” the tuple

Reduce as being from RO 5
keys values
Dy | s | |
s | | R |

Note: no guarantee if R is going to come first or S

More precisely, an inner join: What about outer joins? 27
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Reduce-side Join: 1-to-many
Map

s @ 5
Reduce
keys values

B - - e s -
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Secondary Sorting

MapReduce sorts input to reducers by key
Values may be arbitrarily ordered

What if we want to sort value also?
E.g., k> (vy, 1), (v3, 1), (v 1), (Vg 1)
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Value-to-Key Conversion

Before

k= (g, r4), (vy, 1), (V4 13), (v3, o).
Values arrive in arbitrary order...

After
(k, vi) >y
(k, v3) >,
(k, vs) > g
(k, vg) >y

Values arrive in sorted order...
Process by preserving state across multiple keys
Remember to partition correctly!
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Reduce-side Join: V-to-K Conversion

In reducer...

keys

values

<€ New key encountered: hold in memory

Cross with records from other dataset

v

<€ New key encountered: hold in memory

Cross with records from other dataset
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Reduce-side Join: many-to-many

In reducer...

keys values

Hold in memory

I

|:| S, Cross with records from other dataset

?
(yhat's the o e
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Assume two datasets are sorted by the join key:

Rl
RZ
Ry

R3

Map-side Join

aka sort-merge join

S
S

S

| N 5

v

merge to join
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Map-side Join

aka sort-merge join

Assume two datasets are sorted by the join key:

~ [
~ [

~ [
~ [T

N

y

S

ap
DI -
B

merge to join

. [
~ [

~ [
~ T

N

y

B -

[ =
I -
[

merge to join

How can we parallelize this? Co-partitioning
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Map-side Join

aka sort-merge join

Works if...

Two datasets are co-partitioned
Sorted by join key

MapReduce implementation:

Map over one dataset, read from other corresponding partition
No reducers necessary (unless to do something else)

Co-partitioned, sorted datasets: realistic to expect?
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Hash Join
aka broadcast join, replicated join

Basic idea:
Load one dataset into memory in a hashmap, keyed by join key
Read other dataset, probe for join key

Works if...
. hen?
R << S and R fits into memory <\WN

MapReduce implementation:
Distribute R to all nodes (e.g., DistributedCache)
Map over S, each mapper loads R in memory and builds the hashmap
For every tuple in S, probe join key in R
No reducers necessary (unless to do something else)
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Which join to use?

Hash join > map-side join > reduce-side join

Limitations of each?
In-memory join: memory
Map-side join: sort order and partitioning
Reduce-side join: general purpose
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SQL-on-Hadoop

Spqr% sQL
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Putting Everything Together

SELECT bigl.fx, big2.fy, small.fz
FROM bigl
JOIN big2 ON bigl.id1 = big2.id1
JOIN small ON bigl.id2 = small.id2
WHERE bigl.fx = 2015 AND
big2.f1 < 40 AND
big2.f2 > 2;

Build logical plan
Optimize logical plan

Select physical plan

Note: generic SQL-on-Hadoop implementation; not exactly what Hive does, but pretty close.
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Putting Everything Together

SELECT bigl.fx, big2.fy, small.fz
FROM bigl
JOIN big2 ON bigl.id1 = big2.id1
JOIN small ON bigl.id2 = small.id2
WHERE bigl.fx = 2015 AND
big2.f1 < 40 AND
big2.f2 > 2;

Build logical plan
Optimize logical plan
Select physical plan

project
|

select

join

join

N

bigl big2

small
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Putting Everything Together

SELECT bigl.fx, big2.fy, small.fz
FROM bigl
JOIN big2 ON bigl.id1 = big2.id1
JOIN small ON bigl.id2 = small.id2
WHERE bigl.fx = 2015 AND
big2.f1 < 40 AND
big2.f2 > 2;

Build logical plan
Optimize logical plan

Select physical plan

project

join

join
select select
I |
project project
| |
bigl big2 small
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Putting Everything Together

SELECT bigl.fx, big2.fy, small.fz
FROM bigl
JOIN big2 ON bigl.id1 = big2.id1
JOIN small ON bigl.id2 = small.id2
WHERE bigl.fx = 2015 AND
big2.f1 < 40 AND
big2.f2 > 2;

Build logical plan
Optimize logical plan

Select physical plan

project
Shuffle join? I
Sort-merge join? join
Hash join?
Shuffle join?

Sort-merge join? join

Hash join?

N

select select
I |
project project
| |
bigl big2 small
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Putting Everything Together

SELECT bigl.fx, big2.fy, small.fz
FROM bigl
JOIN big2 ON bigl.id1 = big2.id1
JOIN small ON bigl.id2 = small.id2
WHERE bigl.fx = 2015 AND
big2.f1 < 40 AND
big2.f2 > 2;

Build logical plan
Optimize logical plan
Select physical plan

sink
hashJ
shuffle
J
scan scan
| |
bigl big2

small
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Putting Everything Together

SELECT bigl.fx, big2.fy, small.fz

FROM bigl
JOIN big2 ON bigl.id1 = big2.id1
JOIN small ON bigl.id2 = small.id2 Ma p

WHERE bigl.fx = 2015 AND
big2.f1 < 40 AND
big2.f2 > 2;

Map

Build logical plan

Optimize logical plan scan
. |
Select physical plan L igr | big2

small
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Putting Everything Together

SELECT bigl.fx, big2.fy, small.fz
FROM bigl
JOIN big2 ON bigl.id1 = big2.id1
JOIN small ON bigl.id2 = small.id2
WHERE bigl.fx = 2015 AND
big2.f1 < 40 AND
big2.f2 > 2;

Reduce

Map

Build logical plan

Optimize logical plan scan
. |
Select physical plan L igr | big2

small
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Hive: Behind the Scenes

Now you understand what’s going on here!

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

(Abstract Syntax Tree)

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. (TOK_TABLE_OR_COL s)
word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT
(TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq)) (TOK_SELEXPR (.
(TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) (>= (. (TOK_TABLE_OR_COL k)
freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. (TOK_TABLE_OR_COL s) freq))) (TOK_LIMIT 10)))

(one or more of MapReduce jobs)
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STAGE DEPENDENCIES:
Stage-1 is a root stage
Stage-2 depends on stages: Stage-1
Stage-0 is a root stage

STAGE PLANS:

Stage: Stage-1

Map Reduce
Alias -> Map Operator Tree:

s
TableScan
alias: s
Filter Operator
predicate:
expr (freq >= 1)
type: boolean
Reduce Output Operator
key expressions:

Map-reduce partition columns:
expr: wor
type: string

value expressions:

type: int
expr: word
type: string

TableScan
alias: k
Filter Operator
predicate:
expr: (freq >= 1)
type: boolean
Reduce Output Operator
key expressions:
expr: word

Map-reduce partition columns:
expr: wor
type: string

value expressions:

expr: freq
type: int

Hive: Behind the Scenes

Now you understand what’s going on here!

Reduce Operator Tree:
Join Operator
condition map:
Inner Join O to 1
condition expressions:

0 {VALUE._col0} {VALUE._col1}

1 {VALUE._col0}
outputColumnNames: _col0, _col1, _col2
Filter Operator

predicate:

expr: ((_col0 >= 1) and (_col2 >= 1))
type: boolean

Select Operator

expressions:

expr: _coll
type: string
expr: _col0
type: int
expr: _col2
type: int

outputColumnNames: _col0, _col1, _col2

File Output Operator
compressed: false
GlobalTableld: 0
table:

Stage: Stage-2
Map Reduce
Alias -> Map Operator Tree:

Reduce Output Operator
key expressions:
expr: _coll
type: int
sort order: -

tag: -1

value expressions:
expr: _colo
type: string
expr: _coll
type: int
expr: _col2
type: int

Reduce Operator Tree:
Extract
Limit
File Output Operator

compressed: false

GlobalTableld: 0

table:

14370/10002

input format: org.apache. hadoop.mapred. TextinputFormat
output format: org.apache. hadoop.hive.ql.io. HivelgnoreKeyTextOutputFormat

Stage: Stage-0
Fetch Operator
limit: 10

input format: org.apache. hadoop.mapred. SequenceFileinputFormat
output format: org.apache.hadoop. hive.ql.io. HiveSequenceFileOutputFormat
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SQL-on-Hadoop

Spqr% sQL
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What about Spark SQL?

Based on the DataFrame API:
A distributed collection of data organized into named columns

Two ways of specifying SQL queries:

Directly:
val sqlContext = ... // An existing SQLContext
val df = sqlContext.sql("SELECT * FROM table")
// df is a dataframe, can be further manipulated...

Via DataFrame API:

// employees is a dataframe:

employees
.join(dept, employees ("deptld") === dept ("id"))
.where(employees("gender") === "female")

.groupBy(dept("id"), dept ("name"))
.agg(count("name"))
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SQL Query

DataFrame

Spark SQL: Query Planning

Logical Physical Code

Analysis Optimization Planning Generation

Selected
Physical
Plan

Physical
Plans

RDDs

Unresolved Logical Plan Optimized
Logical Plan 9 Logical Plan

Cost Model

At the end of the day... it’s transformations on RDDs
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Spark SQL: Physical Execution

Narrow Dependencies:

——\ —

T S | R

= | &8

- ) |@&8

map, filter Q

([ oy

=1 "y

— Q

—— —

:— join with inputs
; co—partitipnec_i .

union = Map-side join

Hash join with broadcast variables

Wide Dependencies:

groupByKey

join with inputs not
co-partitioned
= Reduce-side join
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What'’s the assignment?

SQL-on-Hadoop

You
pJ
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What’s the assignment?

select
I_returnflag,
I_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice*(1-I_discount)) as sum_disc_price,

sum(l_extendedprice*(1-l_discount)*(1+|_tax)) as sum_charge,

avg(l_quantity) as avg_qty,

avg(l_extendedprice) as avg_price,

avg(l_discount) as avg_disc,

count(*) as count_order
from lineitem
where

|_shipdate ='YYYY-MM-DD' = = ====cse——————
group by I_returnflag, I_linestatus;

input parameter

P ——

>Ak query Your task

> Raw Spark program
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