WATERLOO

Data-Intensive Distributed Computing
CS 431/631 451/651 (Fall 2021)

Part 7: Analyzing Relational Data (3/3)

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

1

MapReduce: A Major Step Backwards?

MapReduce is a step backward in database access

Schemas are good
Separation of the schema from the application is good
High-level access languages are good

MapReduce is poor implementation
Brute force and only brute force (no indexes, for example)

MapReduce is not novel

MapReduce is missing features
Bulk loader, indexing, updates, transactions...

MapReduce is incompatible with DBMS tools

Source: Blog post by DeWitt and Stonebraker

Hadoop vs. Databases: Grep

70 T e 1500
60 . B 1250
e [SECCreees I ERSSR) ES
1000
I SR || || g -
s § 750
8 30| | 8
500
B e S I e I S - r
M | ””I7 ””'7 ””r [] 250]
0 j L1 o .
1Nodes 10 Nodes 25Nodes 50 Nodes 100 Nodes 25 Nodes 50 Nodes 100 Nodes
Il Vertica [DBMS-X[_—] Hadoop (I Veriica [DBMS-X =] Hadoop
Figure 4: Grep Task Results — 535MB/node Data Set Figure 5: Grep Task Results — 1TB/cluster Data Set

SELECT * FROM Data WHERE field LIKE ‘%XYZ%’;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

The upper segments of each Hadoop bar in the graphs represent the execution time
of the additional MR job to combine the output into a single file.

Hadoop vs. Databases: Select

A0 ===
RO -+ oo
120} -+

100

80

seconds

60

40

20

1Nodes 10Nodes 25Nodes 50 Nodes 100 Nodes

‘ Il Vertica [DBMS-X[_—"] Hadoop ‘

Figure 6: Selection Task Results

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Hadoop vs. Databases: Aggregation

1800 1400
1600) 12000
1400 -+ e[[e
1000} -+ [e
1200 ------{ || [e
e L R B e T Rt I ST I Rttt) it I At I A
8 3
8 BOOf | [] e 8 6000 A | [b B
600 —
400} | [|] e
400} -
200l- 200} |-l [
L 0 L
1Nodes 10 Nodes 25Nodes 50 Nodes 100 Nodes 1Nodes 10 Nodes 25Nodes 50 Nodes 100 Nodes
-Vertica - DBMS—XZ] Hadoop -Vertlca - DBMS—XZ Hadoop
Figure 7: Aggregation Task Results (2.5 million Groups) Figure 8: Aggregation Task Results (2,000 Groups)

SELECT sourcelP, SUM(adRevenue)
FROM UserVisits GROUP BY sourcelP;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Hadoop vs. Databases: Join

D800 -
L0+ wmme e 1
1400} e T I
12001 |-
1)
T 10007 || || | e
3
@ BOO[| || |]
2
600] - |||] b -
L I R T S I e I EEE SRS -
o
0~ N o] < < w @
200 CRE a8 8 [T
rr [T [T [I I
1 Nodes 10 Nodes 25Nodes 50 Nodes 100 Nodes

‘ - Vertica l:l DBMS—XI:l Hadoop ‘

Figure 9: Join Task Results

SELECT INTO Temp sourcelP, AVG(pageRank) as avgPageRank, SUM(adRevenue) as totalRevenue
FROM Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL AND UV.visitDate BETWEEN Date('2000-01-15’) AND Date('2000-01-22") GROUP BY UV.sourcelP;

SELECT sourcelP, totalRevenue, avgPageRank FROM Temp ORDER BY totalRevenue DESC LIMIT 1;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Why was Hadoop slow?

Integer.parselnt
String.substring
String.split

Hadoop slow because string manipulation is slow?

Key Ideas

Binary representations are good
Binary representations need schemas
Schemas allow logical/physical separation

Logical/physical separation allows you to do cool things

~ B0
=~ N0
[O

How bytes are actually
represented in storage...

Row vs. Column Stores

~ 180
=~ DO
~[00O
~ @O

Row store
INENOE " "EEE- BENe

Column store

T [BN T & JecO

10

10

Row vs. Column Stores

Row stores

Easier to modify a record: in-place updates
Might read unnecessary data when processing

Column stores
Only read necessary data when processing
Tuple writes require multiple operations
Tuple updates are complex

11

11

Advantages of Column Stores

Inherent advantages:

Better compression
Read efficiency

Works well with:
Vectorized Execution
Compiled Queries

These are well-known in traditional databases...

12

12

Row vs. Column Stores: Compression

~ [0

=~ O

S I [

~ HlC@O
Row store

ENOEN" “EEEES HL®

Column store

Il N EE BEe e

This compresses better with

i ?
off-the-shelf tools, e.g., 8ZIP- Why*

13

13

Row vs. Column Stores: Compression

=~ EE1E0

S [

=[O

~ HlC@&EO
Row store

INENOEN" “ENEEY Ve,

Column store

B [N N (. 3OeeO

Additional opportunities for smarter compression...

14

14

Columns Stores: RLE
Column store

[[

Run-length encoding example:

is a foreign key, relatively small cardinality
(even better, boolean)

In reality:

Encode:

3 2 1..

15

15

Columns Stores: Integer Coding

Column store
[C

Say you’re coding a bunch of integers...

16

16

¢ this?
RemembEL, VByte

Simple idea: use only as many bytes as needed

Need to reserve one bit per byte as the “continuation bit”
Use remaining bits for encoding value

7oits [R
14 it [c I
21 it [c

Works okay, easy to implement...

Beware of branch mispredicts}

17

1e?
ber th\S : .
RemeMioas) Simple-9

How many different ways can we divide up 28 bits?

(T T AN EEEE 28 1-bit numbers

e e e e e e e e e e

CTTT]) (e] (I i 14 2-bit numbers
(EREE) () () (N [[(i

(LT 11 (o () (TN (i) (i 9 3-bit numbers

() (TR (NI (AN ()

CU] I O O . 7 4-bit numbers
“selectors” T T T TTT1]

(9 total ways)

Efficient decompression with hard-coded decoders
Simple Family — general idea applies to 64-bit words, etc.

Beware of branch mispredictg’

18

Apache Parquet

A columnar storage format available to any

project in the Hadoop ecosystem, regardless

of the choice of data processing framework,
data model or programming language.

19

19

Advantages of Column Stores

Inherent advantages:

Better compression
Read efficiency

Works well with:
Vectorized Execution
Compiled Queries

20

20

Putting Everything Together

SELECT bigl.fx, big2.fy, small.fz
FROM bigl
JOIN big2 ON bigl.id1 = big2.id1
JOIN small ON bigl.id2 = small.id2
WHERE bigl.fx = 2015 AND
big2.f1 < 40 AND
big2.f2 > 2;

Build logical plan
Optimize logical plan

Select physical plan

project

join

join
select select
I |
project project
| |
bigl big2 small

21

21

val size = 100000000

var col = new Array[Int](size) // List of random ints
var selected = new Array[Boolean](size) // Matches a predicate?

for (i <- 0 until size) { for (i <- 0 until size by 8) {
selected(i) = col(i) >0 selected(i) = col(i) >0
} selected(i+1) = col(i+1) >0

selected(i+2) = col(i+2) >0
selected(i+3) = col(i+3) >0
selected(i+4) = col(i+4) >0
selected(i+5) = col(i+5) >0
selected(i+6) = col(i+6) >0
selected(i+7) = col(i+7) >0

}

Which is faster?
Why?

On my laptop: 409ms On my laptop: 174ms
(avg over 10 trials) (avg over 10 trials)

22

22

val size = 100000000

var col = new Array[Int](size) // List of random ints
var selected = new Array[Boolean](size) // Matches a predicate?

for (i <- 0 until size) { for (i <- 0 until size by 8) {
selected(i) = col(i) >0 selected(i) = col(i) >0
} selected(i+1) = col(i+1) >0

selected(i+2) = col(i+2) >0
selected(i+3) = col(i+3) >0
selected(i+4) = col(i+4) >0
selected(i+5) = col(i+5) >0
selected(i+6) = col(i+6) >0
selected(i+7) = col(i+7) >0

}

Why does it matter?

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

On my laptop: 409ms On my laptop: 174ms
(avg over 10 trials) (avg over 10 trials)

23

23

Actually, it’s worse than that!

Each operator implements a common interface
open() |nitialize, reset internal state, etc.

next() Advance and deliver next tuple
close() Clean up, free resources, etc.

Execution driven by repeated calls
to top of operator tree

24

24

open() next() next()...

close() 7Z-pageURL, pageRank
open() next() next()...
close() GpageRank > X

f

Read(Rankings)

open() next() next()...
close()

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Very little actual computation is being done!

25

25

open() next() next()...

close()

open() next() next()...

close()

open() next() next()...

close()

7Z-pageURL, pageRank

GpageRank > X

Read(Rankings)

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Solution?

26

26

val size = 100000000

var col = new Array[Int](size) // List of random ints

ar sel d = new Array[Boolean](size) // Matches a prgglicate?

<- 0 until size by 8) {
ected(i) = col(i) >0
elected(i+1) = col(i+1) >0
selected(i+2) = col(i+2) >0
selected(i+3) = col(i+3) >0
selected(i+4) = col(i+4) >0
selected(i+5) = col(i+5) >0
selected(i+6) = col(i+6) >0
selected(i+7) = col(i+7) >0

- 0 until size) {
d(i) = col(i) >0

Vectorized Execution

next() returns a vector of tuples
All operators rewritten to work on vectors of tuples

Can we do even better?

27

27

select
from

where

Compiled Queries

*

R1,R3,

(select R2.z,count(¥*)

from R2

where R2.y=3

group by R2.z) R2

R1.x=7 and Rl.a=R3.b and R2.z=R3.c
[

w iy

[T .
Ry Ry R2 Rl
original with pipeline boundaries

initialize memory of M,—s, M.—., and I,
[for each tuple t in R;
ifte="7
materialize ¢ in hash table of M,_;
[for each tuple £ in R
ifty=3
L aggregate ¢ in hash table of T,
[for each tuple t in T,
| materialize t in hash table of MX,—.
[for each tuple t3 in Ra
for each match ¢ in M.—.[ts.c]
for each match ¢, in M. [ts.b]
output t1 0tz 0ts

Source: Neumann (2011) Efficiently Compiling Efficient Query Plans for Modern Hardware. VLDB.

28

28

Compiled Queries
Example LLVM query template

define internal void @scanConsumer(%8+ %executionState, %Fragment R2* %data) {
body:

%columnPtr = getelementptr inbounds %Fragment R2x %data, i32 0, i32 0
Yocolumn = load i32#x Y%columnPtr, align 8
YacolumnPtr2 = getelementptr inbounds %Fragment R2+ %data, 132 0, i32 1
Ycolumn2 = load i32+% %columnPtr2, align 8
. (loop over tuples, currently at %id, contains label %cont17)
%yPtr = getelementptr i32x %column, 64 %id
%y = load i32+ Y%yPtr, align 4
%cond = iemp eq i32 %y, 3
br il %cond, label %then, label %contl?
then:
%zPtr = getelementptr 132+ %column2, i64 %id
%z = load 32+ %zPtr, align 4
%hash = urem 132 %z, %hashTableSize
%hashSlot = getelementptr %" HashGroupify::Entry” *x %hashTable, 132 %hash
%hashlter = load %”HashGroupify::Entry” #* %hashSlot, align 8
%cond2 = icmp eq %" HashGroupify::Entry” x %hashlter, null
br il %cond, label %loop20, label %else26
. (check if the group already exists, starts with label %loop20)
else26:
%cond3 = icmp le i32 %spaceRemaining, i32 8
br il %cond, label %then28, label %elsed7
... (create a new group, starts with label %then28)
elsed7:
%ptr = call 8% @_ZN12HashGroupifyl5storelnput TupleEmj
(%" HashGroupify”* %1, 132 hash, i32 8)
... (more loop logic)

. locate tuples in memory

o

. loop over all tuples

o

. filter y =3

IS

. hash z

o

lookup in hash table (C-++ data structure)

™

not found, check space

-

. full, call G4+ to allocate mem or spill

29

Source: Neumann (2011) Efficiently Compiling Efficient Query Plans for Modern Hardware. VLDB.

29

Advantages of Column Stores

Inherent advantages:

Better compression
Read efficiency

Works well with:
Vectorized Execution
Compiled Queries

These are well-known in traditional databases...
Why not in Hadoop?

30

30

Why not in Hadoop?
No reason why not!

Relation

— Row Group 1

RCFile

/”“‘_‘//

HDFS
Block

Row Group 2

Row Group n

/’/4‘_.—/

Row Group
16 Bytes Metadata
Sync Header

101,102, 103, 104, 105

111,112, 113, 114, 115

121,122, 123, 124, 125

131, 132, 133, 134, 135

Source: He et al. (2011) RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce-based Warehouse Systems. ICDE.

31

31

Vectorized Execution?

set hive.vectorized.execution.enabled = true;

Batch of rows, organized as columns:

class VectorizedRowBatch {
boolean selectedInUse;
int[] selected;
int size;
ColumnVector[] columns;

}

class LongColumnVector extends ColumnVector {
long[] vector

}

32

32

Vectorized Execution?

class LongColumnAddLongScalarExpression {
int inputColumn;
int outputColumn;
long scalar;

void evaluate(VectorizedRowBatch batch) {
long [] inVector = ((LongColumnVector)
batch.columns[inputColumn]).vector;
long [] outVector = ((LongColumnVector)
batch.columns[outputColumn]).vector;
if (batch.selectedInUse) {
for (int j = 0; j < batch.size; j++) {
int i = batch.selected([j];
outVector[i] = inVectorl[i] + scalar;
}
}else {
for (inti=0; i < batch.size; i++) {
outVector[i] = inVectorl[i] + scalar;
}
}

}

} Vectorized operator example

33

33

\/Compiled Queries? SpQF’J(Y

SELECT x, y
FROM z WHERE x * (1 —y)/100 < 434;

Predicate is “interpreted” as

LessThan(
Multiply(Attribute("x"),
Divide(Minus(Literal("1"), Attribute("y")), 100)),

434) S\OW‘

Dynamic code generation
(feed AST into Scala compiler to generate bytecode):
row.get("x") * (1 — row.get("y"))/100 < 434

faster!
Much 34

34

Advantages of Column Stores

Inherent advantages:

Better compression
Read efficiency

Works well with:
Vectorized Execution
Compiled Queries

Hadoop can adopt all of these optimizations!

35

35

Key Ideas

Binary representations are good
Binary representations need schemas
Schemas allow logical/physical separation

Logical/physical separation allows you to do cool things

36

36

MapReduce: A Major Step Backwards?

MapReduce is a step backward in database access

Schemas are good
Separation of the schema from the application is good
High-level access languages are good

MapReduce is poor implementation
Brute force and only brute force (no indexes, for example)

MapReduce is not novel

MapReduce is missing features
Bulk loader, indexing, updates, transactions...

MapReduce is incompatible with DMBS tools

Source: Blog post by DeWitt and Stonebraker

37

37

