
Structure of the Course

“Core” framework features and 
algorithm design for batch processing

A
n

al
yz

in
g

Te
xt

A
n

al
yz

in
g

G
ra

p
h

s

A
n

al
yz

in
g

R
el

at
io

n
al

 D
at

a

D
at

a 
M

in
in

g 
an

d
 

M
ac

h
in

e 
Le

ar
n

in
g

What’s beyond batch processing?

2





Use Cases Across Industries

Credit
Identify
fraudulent transactions 
as soon as they occur.

Transportation
Dynamic
Re-routing
Of traffic or
Vehicle Fleet.

Retail
• Dynamic 
Inventory
Management
• Real-time
In-store
Offers and 
recommendations

Consumer 
Internet &
Mobile
Optimize user
engagement based
on user’s current
behavior.

Healthcare
Continuously
monitor patient
vital stats and 
proactively identify
at-risk patients.

Manufacturing
• Identify
equipment
failures and 
react instantly
• Perform
Proactive
maintenance.

Surveillance
Identify
threats
and intrusions
In real-time

Digital 
Advertising
& Marketing
Optimize and 
personalize content 
based on real-time 
information.

4

4



Canonical Stream Processing Architecture

Stream 
processing 

engine
Kafka

Data Ingest

App 1

App 2

.

.

.

Kafka Flume

HDFS 
HBase

Data 
Sources

5

5



What is a data stream?

Sequence of items:
Structured (e.g., tuples)

Ordered (implicitly or timestamped)
Arriving continuously at high volumes

Sometimes not possible to store entirely
Sometimes not possible to even examine all items

6

6



What exactly do you do?

“Standard” relational operations:
Select
Project

Transform (i.e., apply custom UDF)
Group by

Join
Aggregations

What else do you need to make this “work”?

7

7



Issues of Semantics

Group by… aggregate
When do you stop grouping and start aggregating?

Joining a stream and a static source
Simple lookup

Joining two streams
How long do you wait for the join key in the other stream?

Joining two streams, group by and aggregation
When do you stop joining?

What’s the solution?
8

8



Windows

Windows restrict processing scope:
Windows based on ordering attributes (e.g., time) 

Windows based on item (record) counts
Windows based on explicit markers (e.g., punctuations)

9

9



Windows on Ordering Attributes

Assumes the existence of an attribute that 
defines the order of stream elements (e.g., time)

Let T be the window size in units of the ordering attribute

t1 t2 t3 t4 t1' t2’ t3’ t4’

t1 t2
t3

sliding window

tumbling window

ti’ – ti = T

ti+1 – ti = T

10

10



Windows on Counts

Window of size N elements (sliding, tumbling) over the stream

t1 t2 t3t1' t2’ t3’ t4’

11

11



Windows from “Punctuations”

Application-inserted “end-of-processing”
Example: stream of actions… “end of user session”

Properties
Advantage: application-controlled semantics

Disadvantage: unpredictable window size (too large or too small)

12

12



Streams Processing Challenges

Inherent challenges
Latency requirements

Space bounds

System challenges
Bursty behavior and load balancing

Out-of-order message delivery and non-determinism
Consistency semantics (at most once, exactly once, at least once)

13

13



Producer/Consumers

Producer Consumer

How do consumers get data from producers?
14

14



Producer/Consumers

Producer Consumer

Producer pushes
e.g., callback

15

15



Producer/Consumers

Producer Consumer

e.g., poll, tail
Consumer pulls

16

16



Producer/Consumers

Producer Consumer

Consumer

Consumer

Consumer

Producer

17

17



Producer/Consumers

Producer Consumer

Consumer

Consumer

Consumer

Producer

B
ro

ke
r

Queue, Pub/Sub
18

18



Producer/Consumers

Producer Consumer

Consumer

Consumer

Consumer

Producer

B
ro

ke
r

19

19



Stream Processing Frameworks
• Apache Spark Streaming

• Apache Storm

• Apache Flink

20



21

21



Spark Streaming: Discretized Streams

Spark

Spark
Streaming

batches of X 
seconds

live data stream

processed 
results

Source: All following Spark Streaming slides by Tathagata Das 

Run a streaming computation as a series 
of very small, deterministic batch jobs
Chop up the stream into batches of X seconds 

Process as RDDs!
Return results in batches

22

22



23

23



Example: Get hashtags from Twitter 

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

DStream: a sequence of RDD representing a stream of data

batch @ t+1batch @ t batch @ t+2

tweets DStream

Twitter Streaming API

stored in memory as an RDD 
(immutable, distributed)

24

24



Example: Get hashtags from Twitter 

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

flatMap flatMap flatMap

…

transformation: modify data in one 
Dstream to create another DStream

new DStream

new RDDs created 
for every batch 

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, … ]

25

25



Example: Get hashtags from Twitter 

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

flatMap flatMap flatMap

save save save

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags DStream

every batch 
saved to HDFS

26

26



Fault Tolerance

Bottom line: they’re just RDDs!

27

27



Fault Tolerance

input data 
replicated
in memory

flatMap

lost partitions 
recomputed on 
other workers

tweets
RDD

hashTags
RDD

Bottom line: they’re just RDDs!

28

28



Key Concepts

DStream – sequence of RDDs representing a stream of data
Twitter, HDFS, Kafka, Flume, TCP sockets

Transformations – modify data from on DStream to another
Standard RDD operations – map, countByValue, reduce, join, …

Stateful operations – window, countByValueAndWindow, …

Output Operations – send data to external entity
saveAsHadoopFiles – saves to HDFS

foreach – do anything with each batch of results

29

29



Example: Count the hashtags

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.countByValue()

flatMap

map

reduceByKey

flatMap

map

reduceByKey

…

flatMap

map

reduceByKey

batch @ t+1batch @ t batch @ t+2

hashTags

tweets

tagCounts
[(#cat, 10), (#dog, 25), ... ]

30

30



Example: Count the hashtags over last 10 mins

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

sliding window 
operation

window length sliding interval

31

31



Example: Count the hashtags over last 10 mins

tagCounts

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

hashTags

t-1 t t+1 t+2 t+3

sliding window

countByValue

count over all 
the data in the 

window

32

32



Smart window-based countByValue

?

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1))

hashTags

t-1 t t+1 t+2 t+3

+

+

–

countByValue

add the 
counts from 

the new batch 
in the window

subtract the 
counts from 

batch 
before the 

window

tagCounts

33

33



Smart window-based reduce

Incremental counting generalizes to many reduce operations
Need a function to “inverse reduce” (“subtract” for counting)

val tagCounts = hashtags

.countByValueAndWindow(Minutes(10), Seconds(1))

val tagCounts = hashtags

.reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(1))

34

tagCounts = hashtags

.reduceByKeyAndWindow(lambda x,y:x+y, lambda x,y:x-y, 
Minutes(10), Seconds(1))

34



Can process 6 GB/sec (60M records/sec) of data on 100 nodes at sub-second latencyTested

 with 100 streams of data on 100 EC2 instances with 4 cores each

Performance

35

35



Higher throughput than Storm

 Spark Streaming: 670k 
records/second/node

 Storm: 115k 
records/second/node

Comparison with Storm 

36

36


