
Data-Intensive Distributed Computing

Part 8: Real-Time Data Analytics (2/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Fall 2021)

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451

1

1

Slides from Michael G. Noll, Verisign

2

2

Kafka?

• http://kafka.apache.org/

• Originated at LinkedIn, open sourced in early 2011

• Implemented in Scala, some Java

3

Jay Kreps chose to name the software after the author Franz Kafka because it is "a

system optimized for writing", and he liked Kafka's work.

3

Kafka adoption and use cases

• LinkedIn: activity streams, operational metrics, data bus

• 400 nodes, 18k topics, 220B msg/day (peak 3.2M msg/s), May 2014

• Netflix: real-time monitoring and event processing

• Twitter: as part of their Storm real-time data pipelines

• Spotify: log delivery (from 4h down to 10s), Hadoop

• Loggly: log collection and processing

• Mozilla: telemetry data

• Airbnb, Cisco, Uber, …

https://cwiki.apache.org/confluence/display/KAFKA/Powered+By

4

4

How fast is Kafka?

• “Up to 2 million writes/sec on 3 cheap machines”

• Using 3 producers on 3 different machines, 3x async replication

• Only 1 producer/machine because NIC already saturated

5

5

Why is Kafka so fast?

• Fast writes:

• While Kafka persists all data to disk, essentially all writes go to the

page cache of OS, i.e. RAM.

• Fast reads:

• Very efficient to transfer data from page cache to a network socket

• Linux: sendfile() system call

• Combination of the two = fast Kafka!

• Example (Operations): On a Kafka cluster where the consumers are

mostly caught up you will see no read activity on the disks as they will be

serving data entirely from cache.

http://kafka.apache.org/documentation.html#persistence

6

6

A first look

• The who is who

• Producers write data to brokers.

• Consumers read data from brokers.

• All this is distributed.

• The data

• Data is stored in topics.

• Topics are split into partitions, which are replicated.

7

7

A first look

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

8

Kafka uses Zookeeper to do leadership election of Kafka Broker and Topic Partition
pairs. Kafka uses Zookeeper to manage service discovery for Kafka Brokers that
form the cluster. Zookeeper sends changes of the topology to Kafka, so each node
in the cluster knows when a new broker joined, a Broker died, a topic was removed
or a topic was added, etc. Zookeeper provides an in-sync view of Kafka Cluster
configuration. – from cloudurable

8

Broker(s)

Topics

ne

w

Producer A1

Producer A2

Producer An

…

Producers always append to “tail”

(think: append to a file)

…

Kafka prunes “head” based on age or max size or “key”

Older msgs Newer msgs

Kafka topic

• Topic: feed name to which messages are published

• Example: “zerg.hydra”

9

9

Broker(s)

Topics

ne

w

Producer A1

Producer A2

Producer An

…

Producers always append to “tail”

(think: append to a file)

…

Older msgs Newer msgs

Consumer group C1 Consumers use an “offset pointer” to

track/control their read progress

(and decide the pace of consumption)
Consumer group C2

10

10

Partitions

• A topic consists of partitions.

• Partition: ordered + immutable sequence of messages

that is continually appended to

11

11

Partitions

• #partitions of a topic is configurable

• #partitions determines max consumer (group) parallelism

• Consumer group A, with 2 consumers, reads from a 4-partition topic

• Consumer group B, with 4 consumers, reads from the same topic

12

12

Partition offsets

• Offset: messages in the partitions are each assigned a

unique (per partition) and sequential id called the offset

• Consumers track their pointers via (offset, partition, topic) tuples

Consumer group C1

13

13

Replicas of a partition

• Replicas: “backups” of a partition

• They exist solely to prevent data loss.

• Replicas are never read from, never written to.

• They do NOT help to increase producer or consumer parallelism!

• Kafka tolerates (numReplicas - 1) dead brokers before losing data

• LinkedIn: numReplicas == 2 → 1 broker can die

14

14

Topics vs. Partitions vs. Replicas

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

15

15

16

probabilistic data structures for

Big data and streaming

16

Streams Processing Challenges

Inherent challenges
Latency requirements

Space bounds

System challenges
Bursty behavior and load balancing

Out-of-order message delivery and non-determinism
Consistency semantics (at most once, exactly once, at least once)

17

17

Algorithmic Solutions

Throw away data
Sampling

Accepting some approximations
Hashing

18

18

Reservoir Sampling

Task: select s elements from a
stream of size N with uniform probability

N can be very very large
We might not even know what N is! (infinite stream)

Solution: Reservoir sampling
Store first s elements

For the k-th element thereafter, keep with probability s/k
(randomly discard an existing element)

Example: s = 10
Keep first 10 elements

11th element: keep with 10/11
12th element: keep with 10/12

…

19

19

Reservoir Sampling: How does it work?

Example: s = 10
Keep first 10 elements

11th element: keep with 10/11

General case: at the (k + 1)th element
Probability of selecting each item up until now is s/k

Probability existing item is discarded: s/(k+1) × 1/s = 1/(k + 1)
Probability existing item survives: k/(k + 1)

Probability each item survives to (k + 1)th round:
(s/k) × k/(k + 1) = s/(k + 1)

If we decide to keep it: sampled uniformly by definition
probability existing item is discarded: 10/11 × 1/10 = 1/11
probability existing item survives: 10/11

20

20

Hashing for Three Common Tasks

Cardinality estimation
What’s the cardinality of set S?

How many unique visitors to this page?

Set membership
Is x a member of set S?

Has this user seen this ad before?

Frequency estimation
How many times have we observed x?

How many queries has this user issued?

HashSet

HashSet

HashMap

HLL counter

Bloom Filter

CMS

21

21

HyperLogLog Counter

Task: cardinality estimation of set
size() → number of unique elements in the set

Observation: hash each item and examine the hash code
On expectation, 1/2 of the hash codes will start with 0

On expectation, 1/4 of the hash codes will start with 00
On expectation, 1/8 of the hash codes will start with 000

On expectation, 1/16 of the hash codes will start with 0000
…

How do we take advantage of this observation?
22

22

Bloom Filters

Task: keep track of set membership
put(x) → insert x into the set

contains(x) → yes if x is a member of the set

0 0 0 0 0 0 0 0 0 0 0 0

Components
m-bit bit vector

k hash functions: h1 … hk

23

23

0 0 0 0 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11

Bloom Filters: put

24

24

0 1 0 0 1 0 0 0 0 0 1 0

xput

Bloom Filters: put

25

25

0 1 0 0 1 0 0 0 0 0 1 0

xcontains h1(x) = 2
h2(x) = 5
h3(x) = 11

Bloom Filters: contains

26

26

0 1 0 0 1 0 0 0 0 0 1 0

xcontains h1(x) = 2
h2(x) = 5
h3(x) = 11

AND = YES

A[h1(x)]
A[h2(x)]
A[h3(x)]

Bloom Filters: contains

27

27

0 1 0 0 1 0 0 0 0 0 1 0

ycontains h1(y) = 2
h2(y) = 6
h3(y) = 9

Bloom Filters: contains

28

28

0 1 0 0 1 0 0 0 0 0 1 0

ycontains h1(y) = 2
h2(y) = 6
h3(y) = 9

What’s going on here?

AND = NO

A[h1(y)]
A[h2(y)]
A[h3(y)]

Bloom Filters: contains

29

29

Bloom Filters

Error properties: contains(x)
False positives possible

No false negatives

Usage
Constraints: capacity, error probability

Tunable parameters: size of bit vector m, number of hash functions k

30

30

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

m

k

Count-Min Sketches

Task: frequency estimation
put(x) → increment count of x by one

get(x) → returns the frequency of x

Components
m by k array of counters
k hash functions: h1 … hk

31

31

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

Count-Min Sketches: put

32

32

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0

xput

Count-Min Sketches: put

33

33

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

Count-Min Sketches: put

34

34

0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 2 0 0 0 0 0 0 0 0

xput

Count-Min Sketches: put

35

35

0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 2 0 0 0 0 0 0 0 0

yput h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2

Count-Min Sketches: put

36

36

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yput

Count-Min Sketches: put

37

37

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

xget h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

Count-Min Sketches: get

38

38

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

xget h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

A[h3(x)]MIN = 2

A[h1(x)]
A[h2(x)]

A[h4(x)]

Count-Min Sketches: get

39

39

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yget h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2

Count-Min Sketches: get

40

40

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yget h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2

MIN = 1 A[h3(y)]

A[h1(y)]
A[h2(y)]

A[h4(y)]

Count-Min Sketches: get

41

41

Count-Min Sketches

Error properties: get(x)
Reasonable estimation of heavy-hitters

Frequent over-estimation of tail

Usage
Constraints: number of distinct events, distribution of events, error bounds

Tunable parameters: number of counters m and hash functions k, size of counters

42

42

Hashing for Three Common Tasks

Cardinality estimation
What’s the cardinality of set S?

How many unique visitors to this page?

Set membership
Is x a member of set S?

Has this user seen this ad before?

Frequency estimation
How many times have we observed x?

How many queries has this user issued?

HashSet

HashSet

HashMap

HLL counter

Bloom Filter

CMS

43

43

More information on Kafka (optional reading)

44

Writing data to Kafka

45

45

Writing data to Kafka

• You use Kafka “producers” to write data to Kafka brokers.

• Available for JVM (Java, Scala), C/C++, Python, Ruby, etc.

• A simple example producer:

46

46

Producers

• Two types of producers: “async” and “sync”

• Same API and configuration, but slightly different semantics.

• What applies to a sync producer almost always applies to async, too.

• Async producer is preferred when you want higher throughput.

47

47

Producers

• Two aspects worth mentioning because they significantly influence

Kafka performance:

1. Message acking

2. Batching of messages

48

48

1) Message acking

• Background:

• In Kafka, a message is considered committed when “any required” replica

for that partition have applied it to their data log.

• Message acking is about conveying this “Yes, committed!” information back

from the brokers to the producer client.

• Exact meaning of “any required” is defined by request.required.acks.

• Only producers must configure acking

• Exact behavior is configured via request.required.acks, which

determines when a produce request is considered completed.

• Allows you to trade latency (speed) <-> durability (data safety).

• Consumers: Acking and how you configured it on the side of producers do

not matter to consumers because only committed messages are ever given

out to consumers. They don’t need to worry about potentially seeing a

message that could be lost if the leader fails.

49

49

1) Message acking

• Typical values of request.required.acks

• 0: producer never waits for an ack from the broker.

• Gives the lowest latency but the weakest durability guarantees.

• 1: producer gets an ack after the leader replica has received the data.

• Gives better durability as the we wait until the lead broker acks the request. Only msgs that

were written to the now-dead leader but not yet replicated will be lost.

• -1: producer gets an ack after all replicas have received the data.

• Gives the best durability as Kafka guarantees that no data will be lost as long as at least

one replica remains.

b
e
tt
e
r

la
te

n
c
y

b
e

tt
e

r

d
u
ra

b
ili

ty

50

50

2) Batching of messages

• Batching improves throughput

• Tradeoff is data loss if client dies before pending messages have been sent.

• You have two options to “batch” messages:

1. Use send(listOfMessages).

• Sync producer: will send this list (“batch”) of messages right now. Blocks!

• Async producer: will send this list of messages in background “as usual”, i.e.

according to batch-related configuration settings. Does not block!

2. Use send(singleMessage) with async producer.

• For async the behavior is the same as send(listOfMessages).

51

51

Reading data from Kafka

52

52

Reading data from Kafka

• You use Kafka “consumers” to write data to Kafka brokers.

• Available for JVM (Java, Scala), C/C++, Python, Ruby, etc.

53

53

Reading data from Kafka

• Consumers pull from Kafka (there’s no push)

• Allows consumers to control their pace of consumption.

• Allows to design downstream apps for average load, not peak load

• Consumers are responsible to track their read positions aka “offsets”

54

54

Reading data from Kafka

• Consumer “groups”

• Allows multi-threaded and/or multi-machine consumption from Kafka topics.

• Consumers “join” a group by using the same group.id

• Kafka guarantees a message is only ever read by a single consumer in a group.

• Kafka assigns the partitions of a topic to the consumers in a group so that each partition is

consumed by exactly one consumer in the group.

• Maximum parallelism of a consumer group: #consumers (in the group) <= #partitions

55

55

Guarantees when reading data from Kafka

• A message is only ever read by a single consumer in a group.

• A consumer sees messages in the order they were stored in the log.

• The order of messages is only guaranteed within a partition.

56

56

Rebalancing: how consumers meet brokers

• The assignment of brokers – via the partitions of a topic – to

consumers is quite important, and it is dynamic at run-time.

57

57

