WATERLOO

Data-Intensive Distributed Computing
CS 431/631 451/651 (Fall 2021)

Part 10a: Analyzing Graphs, Redux

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Graph Algorithms, again?
(srsly?)

HDFS HDFS

Adjacency Lists PageRank vector
Cache! \
> join
flatMap
reduceByKey v—l'
PageRank vector
> join <—|
flatMap
reduceByKey '—l
PageRank vector
> join <—|

Characteristics of Graph Algorithms

Parallel graph traversals
Local computations
Message passing along graph edges

Iterations

Even faster?

Big Data Processing in a Nutshell

Let's be

a
Irter about this)
Partition
Replicate

Reduce cross-partition communication

Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLs

uwaterloo.ca ca.uwaterloo
microsoft.com ca.uwaterloo.cs
student.cs.uwaterloo.ca ca.uwaterloo.cs.student
ece.uwaterloo.ca ca.uwaterloo.ece
cs.uwaterloo.ca com.microsoft
office.microsoft.com com.microsoft.office

How much difference does it make?

1600

_ +18%
€1400 1.4b
o
[*]
ﬁ 1200 674m
g -15%
Z 1000 ——
5
€ 800 -
c
=]
°é 600 - =
o 86m
® 400 - —
2
-9

0 -

-Combining Baseline +IMC +range

partitioning

PageRank over webgraph
(40m vertices, 1.4b edges)

Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.

Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLs
Social networks: sort by demographic characteristics

facebook

Country Structure in Facebook

| Analysis of 721 million active
users (May 2011)

. 54 countries w/ >1m active
|

'-_.- users, >50% penetration

Ugander et al. (2011) The Anatomy of the Facebook Social Graph.

Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLs
Social networks: sort by demographic characteristics

But what about graphs in general?

10

11

Big Data Processing in a Nutshell

Partition
Replicate

Reduce cross-partition communication

Industry solution?

12

Partition

\/ \
NS
N

13

Partition

What’s the fundamental issue?

14

Partition

\/
\(TN
N

SIow
Fast Fast

15

State-of-the-Art Distributed Graph Algorithms

Periodic
nchronizat

,/

o ||
\

\

Fast asynchronous Fast asynchronous
iterations iterations

16

Graph Processing Frameworks

17

Graph Processing Frameworks

*Pregel
*Google
LY)
. [(J
*Apache Giraph @se e zs
) 14
*Based on Pregel '.':_%‘ % "::,a‘
a r{}
*On Hadoop Yyriiesenangnd
A P A C H E
GIRAPH

*Spark GraphX

18

S 08
0600“”4. S

19

What is Apache Giraph

* Giraph performs iterative calculation on top of an existing Hadoop
cluster

20

Giraph highjacks Hadoop mappers. All iterations are done in memory (and
optionally spilled to disk). This is a mapper only job.

20

Bulk-Synchronous Parallel (BSP)
Programming Model

Vertex-centric model

Iteration i Iteration i+|

21

Vertex Centric Programming

= Vertex Centric Programming Model
» Logic written from perspective on a single vertex.
» Executed on all vertices.

= \Vertices know about

» Their own value(s)
» Their outgoing edges

22

Bulk-Synchronous Parallel (BSP)

Programmlng Model
P3 P4

Superstep 1

Computation

Communication

Barrier Synchronization

Superstep 2

Computation

L L]

“Often expensive and should be used as sparingly as possible”

23

Vertex State Machine

Vote to halt
/_—_\\“a

CGam) =D

—’/

Message received

= |n superstep O, every vertex is in the active state.

A by voting to halt.

® |t can be reactivated by receiving an (external)
message.

= Algorithm termination is based on

24

24

Superstep 0

Superstep 1

Superstep 2

Superstep 3

Finding the Largest Value in a Graph

Worker

—» Edges

=) Message

‘ Active
Voted
to Halt

25

25

Finding the Largest Value in a Graph

MaxComputation BasicComputation<IntWritable, IntWritable
NullWritable, IntWritable> {
@Override
compute(Vertex<IntWritable, IntWritable, NullWritable> vertex
Iterable<IntWritable> messages) I0Exception

changed =
(IntWritable message : messages) {
(vertex.getValue().get() < message.get()) {
vertex.setValue(message)
changed =
}
}

(getSuperstep() == @ || changed) {
sendMessageToAllEdges (vertex, vertex.getValue())
}
vertex.voteToHalt()

}

26

Advantages

= Makes distributed programming easy
» No locks, semaphores, race conditions

» Separates computing from communication phase

= Vertex-level parallelization
» Bulk message passing for efficiency

= Stateful (in-memory)
» Only messages & checkpoints hit disk

27

27

Giraph Architecture

Master — Application coordinator
Synchronizes supersteps
Assigns partitions to workers before superstep begins

Workers — Computation & messaging
Handle I/O —reading and writing the graph
Computation/messaging of assigned partitions

ZooKeeper
Maintains global application state

28

Lifecycle of a Giraph Program

Loading phase Compute phase Offloading phase
r__.'_ﬁ —A— F—‘&ﬁ
~ N

Workers call

compute() on the
active vertices and
collect messages

Vertices are loaded . Vertices are offloaded
into Giraph through an More vertices and to HDFS through an
InputFormat All data loaded messaReg 10 be QutputFormat
processed
Al vertices halted
-and no messages
produced.

All vertices computed

Workers compute
All messages sent aqaregators, collect
statistics, and wait at
the synchronisation
barrier

Workers finish
exchange messages

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014

29

29

More Applications

30

SSSP (1/6)

Worker 4

Worker 1

Worker 3

Input Graph

31

31

SSSP (2/6)

Worker Worker 4

Worker 1

Worker 3

2 Superstep 0

32

32

Worker 1

SSSP (3/6)

Worker Worker 4

Worker 3

33

33

Worker 1

SSSP (4/6)

Worker 4

Worker

Worker 3

ol 74
3 & Superstep 2
w

34

34

SSSP (5/6)

Worker 4

Worker 1

Worker 3

x Superstep 3
w

35

35

SSSP (6/6)

Worker 4

Worker 1

Worker 3

%gorithm has converged

36

36

Single Source Shortest path

public void compute(Iterable<DoubleWritable> messages) {
double minDist = Double.MAX_VALUE;
for (DoubleWritable message : messages) {
minDist = Math.min(minDist, message.get());
}
if (minDist < getValue().get()) {
setValue(new DoubleWritable(minDist));
for (Edge<LongWritable, FloatWritable> edge : getEdges()) {
double distance = minDist + edge.getValue().get();
sendMessage(edge . getTargetVertexId(), new DoubleWritable(distance));
}
}
voteToHalt();
}

37

