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Graph Algorithms, again?
(srsly?)
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Characteristics of Graph Algorithms

Parallel graph traversals
Local computations
Message passing along graph edges

Iterations

Even faster?




Big Data Processing in a Nutshell

Let's be

a
Irter about this)
Partition
Replicate

Reduce cross-partition communication




Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLs

uwaterloo.ca ca.uwaterloo
microsoft.com ca.uwaterloo.cs
student.cs.uwaterloo.ca ca.uwaterloo.cs.student
ece.uwaterloo.ca ca.uwaterloo.ece
cs.uwaterloo.ca com.microsoft
office.microsoft.com com.microsoft.office




How much difference does it make?
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Lin and Schatz. (2010) Design Patterns for Efficient Graph Algorithms in MapReduce.




Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLs
Social networks: sort by demographic characteristics

facebook




Country Structure in Facebook

| Analysis of 721 million active
users (May 2011)

. 54 countries w/ >1m active
|

'-_.- users, >50% penetration

Ugander et al. (2011) The Anatomy of the Facebook Social Graph.




Simple Partitioning Techniques

Hash partitioning

Range partitioning on some underlying linearization
Web pages: lexicographic sort of domain-reversed URLs
Social networks: sort by demographic characteristics

But what about graphs in general?
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Big Data Processing in a Nutshell

Partition
Replicate

Reduce cross-partition communication

Industry solution?
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Partition

What’s the fundamental issue?
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State-of-the-Art Distributed Graph Algorithms
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Graph Processing Frameworks

17



Graph Processing Frameworks

*Pregel
*Google
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What is Apache Giraph

* Giraph performs iterative calculation on top of an existing Hadoop
cluster
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Giraph highjacks Hadoop mappers. All iterations are done in memory (and
optionally spilled to disk). This is a mapper only job.
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Bulk-Synchronous Parallel (BSP)
Programming Model

Vertex-centric model

Iteration i Iteration i+|
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Vertex Centric Programming

= Vertex Centric Programming Model
» Logic written from perspective on a single vertex.
» Executed on all vertices.

= \Vertices know about

» Their own value(s)
» Their outgoing edges
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Bulk-Synchronous Parallel (BSP)

Programmlng Model
P3 P4

Superstep 1

Computation

Communication

Barrier Synchronization

Superstep 2

Computation

L L]

“Often expensive and should be used as sparingly as possible”
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Vertex State Machine

Vote to halt
/_—_\\“a

CGam) =D
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Message received

= |n superstep O, every vertex is in the active state.

A by voting to halt.

® |t can be reactivated by receiving an (external)
message.

= Algorithm termination is based on

24
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Superstep 0

Superstep 1

Superstep 2

Superstep 3

Finding the Largest Value in a Graph

Worker

—» Edges

=) Message

‘ Active
Voted
to Halt
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Finding the Largest Value in a Graph

MaxComputation BasicComputation<IntWritable, IntWritable
NullWritable, IntWritable> {
@Override
compute(Vertex<IntWritable, IntWritable, NullWritable> vertex
Iterable<IntWritable> messages) I0Exception

changed =
(IntWritable message : messages) {
(vertex.getValue().get() < message.get()) {
vertex.setValue(message)
changed =
}
}

(getSuperstep() == @ || changed) {
sendMessageToAllEdges (vertex, vertex.getValue())
}
vertex.voteToHalt()

}

26



Advantages

= Makes distributed programming easy
» No locks, semaphores, race conditions

» Separates computing from communication phase

= Vertex-level parallelization
» Bulk message passing for efficiency

= Stateful (in-memory)
» Only messages & checkpoints hit disk
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Giraph Architecture

Master — Application coordinator
Synchronizes supersteps
Assigns partitions to workers before superstep begins

Workers — Computation & messaging
Handle I/O —reading and writing the graph
Computation/messaging of assigned partitions

ZooKeeper
Maintains global application state
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Lifecycle of a Giraph Program

Loading phase Compute phase Offloading phase
r__.'_ﬁ —A— F—‘&ﬁ
~ N

Workers call

compute() on the
active vertices and
collect messages

Vertices are loaded . Vertices are offloaded
into Giraph through an More vertices and to HDFS through an
InputFormat All data loaded messaReg 10 be QutputFormat
processed
Al vertices halted
-and no messages
produced.

All vertices computed

Workers compute
All messages sent  aqaregators, collect
statistics, and wait at
the synchronisation
barrier

Workers finish
exchange messages

Apache Giraph, Claudio Martella, Hadoop Summit, Amsterdam, April 2014
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More Applications
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SSSP (1/6)

Worker 4

Worker 1

Worker 3

Input Graph
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SSSP (2/6)

Worker Worker 4

Worker 1

Worker 3

2 Superstep 0
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Worker 1

SSSP (3/6)

Worker Worker 4

Worker 3
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Worker 1

SSSP (4/6)

Worker 4

Worker

Worker 3

ol 74
3 & Superstep 2
w
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SSSP (5/6)

Worker 4

Worker 1

Worker 3

x Superstep 3
w
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SSSP (6/6)

Worker 4

Worker 1

Worker 3

%gorithm has converged
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Single Source Shortest path

public void compute(Iterable<DoubleWritable> messages) {
double minDist = Double.MAX_VALUE;
for (DoubleWritable message : messages) {
minDist = Math.min(minDist, message.get());
}
if (minDist < getValue().get()) {
setValue(new DoubleWritable(minDist));
for (Edge<LongWritable, FloatWritable> edge : getEdges()) {
double distance = minDist + edge.getValue().get();
sendMessage(edge . getTargetVertexId(), new DoubleWritable(distance));
}
}
voteToHalt();
}
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