
Data-Intensive
Distributed
Computing
CS431/451/631/651

Module 2 - MapReduce

1

This Module’s Agenda

Computer Clusters

Distributed Computation (MapReduce)

Distributed Storage

Algorithm Design

2

Hello, World?

• Something basic to do with a
text file:

• How many times does the word
“Waterloo” appear?

• We usually did this as the last
tutorial in CS116!

• Read lines, Split lines, count
“Waterloo”

3

Word Count at Scale
Assume HDD: 100MB/s sustained sequential reads

Load TimeFile Size

0.1 seconds10MB

10 seconds1GB

1.67 minutes10GB

16 minutes100GB

28 hours10TB

4

28 hours???

• How can we improve that time?
• NVMe Gen4.0 – 7000 MB/s

sequential read
• Only 23 minutes now!
• Price / TB = $150 vs $15 for HDD

5

Not fast
enough?

• You can make a RAID of NVMe drives
• You need an enterprise server to have the

PCIe lanes for that

$$$

6

Horizontal vs Vertical

SUPER BEEFY SERVER -
$200,000

COMMODITY SERVER -
$2000

CHEAPER IS BETTER?

7

HORIZONTAL
SCALING

• 100x the servers, 100x the speed?

8

Hello World x100

Each server loads
1/100th of the file

Each server counts
“Waterloo”

Add the 100 totals
together

9

MapReduce

• Two Functions
• Map: Like* Python’s / Racket’s Map
• Reduce Like* Python’s Reduce

* KINDA

Map is actually like map-then-flatten: each call outputs a LIST of things, and these lists get
merged together.
Reduce is similarly structured.

People sometimes calls the phases “Classification” and “Aggregation”

10

Key-Value Pairs
MapReduce is based around Key-Value Pairs
This is a common way to break things down!

If the input is a text file:

Key – Position of a line
Value – Text of a line.

11

MapReduce

Programmer defines two functions:

map: (k1, v1) ⟶ List[(k2, v2)]
reduce: (k2, List[v2]) ⟶ List[(k3, v3)]

12

Map

Input:
• key : k1
• value : v1

Output:
• List[(k2, v2)]

Note: The output key can be
different than the input key!

The key will almost always be different, and often will be part of the value! Again, you can
think of “Map” being “Classify this value by extracting keys from it”

13

Map – Counting Waterloo
(0 : ‘Waterloo is a city in the
Canadian province of Ontario. It
is one of three cities in the
Regional Municipality of Waterloo
(formerly Waterloo County).
Waterloo is situated about 94 km
(58 mi) southwest of Toronto. Due
to the close proximity of the
city of Kitchener to Waterloo,
the two together are often
referred to as "Kitchener–
Waterloo" or the "Twin Cities".’)

(1 : ‘While several unsuccessful
attempts to combine the
municipalities of Kitchener and
Waterloo have been made,
following the 1973 establishment
of the Region of Waterloo, less
motivation to do so existed, and
as a result, Waterloo remains an
independent city. At the time of
the 2021 census, the population
of Waterloo was 121,436’)

((‘waterloo’: 5))

((‘waterloo’ : 4))

map

K1 is an integer, V1 is a string (a line of text). K2 is a string (a word),

14

Reduce

Input:
• key: k2
• ALL values associated with

that key: List[v2]
Output:

• List[(k3, v3)]

Again, the types need not be the
same.

K3 is more likely to be the same as K2 here. If you’re using Reduce to mean “Aggregate”
what you’re doing is a fold (sorry, a “reduce”) that merges all of the values with the same
key into a single value.

BUT, you CAN have different keys, and you can produce multiple key-value pairs here, just
like Map can. If you’re doing that, you’re probably planning more than one MapReduce
iterations though! Maybe. It depends.

15

Reduce – Counting Waterloo

(‘waterloo’,[4, 5]) (‘waterloo’ : 9)reduce

K2=K3, V2=V3. This is doing typical aggregation.

16

Square Peg,
Round Hole?

MapReduce requires a
key, even though we
only need a single
integer (the count)

It’s also crazy overkill to use MapReduce to look for just one word’s frequency. Let’s make
it more general shall we?

17

All Word
Counts

• From Counter to Map
• Keys are Words, Values

are Counts
• Reducer is now non-trivial

• (and having a key makes
sense)

Nothing changes here with the keys and values, we’re just going to emit counts for each
word, not just one. (Good thing we already used the word as a key!)

18

19

The expected
output is …

• For each word in the input
file, count how many times
it appears in the file.

19

CountWord

36Waterloo

27Kitchener

512City

12450Is

16700The

123University

…

All mappers send list of (key, value) pairs to the reducer, where the key is word and value is
its count.
The reducer adds up all intermediate results. But it can now be a bottleneck.

Can we have multiple reducers like mappers?

20

. . .
S1 S2 S3 S19 S20

File.txt

(waterloo, 5)
(kitchener, 2)

(city,10)
…

… … … (university, 4)
(waterloo, 21)

(city, 4)
…+

(waterloo, 36)
(city, 500)

…

M
ap

Re
du

ce

20

Memory?

• The Counter used 8 bytes max

• How much does the Dictionary
use?

• O(n) if there are n unique words.

• In 10TB of data…what’s n?

It’s probably small? Thinking at scale means being very careful about every single time
you’ve said “This number is probably small”. Assumptions are the enemy here!
IF it’s a text file then the lines are “probably” small. This might be a safe assumption even
in 10TB of text. But what if there are very long lines?

21

Map – Counting Waterloo, Alternative
(0 : ‘Waterloo is a city in the
Canadian province of Ontario. It
is one of three cities in the
Regional Municipality of Waterloo
(formerly Waterloo County).
Waterloo is situated about 94 km
(58 mi) southwest of Toronto. Due
to the close proximity of the
city of Kitchener to Waterloo,
the two together are often
referred to as "Kitchener–
Waterloo" or the "Twin Cities".’)

(1 : ‘While several unsuccessful
attempts to combine the
municipalities of Kitchener and
Waterloo have been made,
following the 1973 establishment
of the Region of Waterloo, less
motivation to do so existed, and
as a result, Waterloo remains an
independent city. At the time of
the 2021 census, the population
of Waterloo was 121,436’)

((‘waterloo’: 1), (‘waterloo’: 1), (‘waterloo’: 1)
(‘waterloo’: 1), (‘waterloo’: 1))

((‘waterloo’ : 1), (‘waterloo’: 1), (‘waterloo’: 1),
(‘waterloo’: 1))

map

Now we do not need a dictionary for each row, we can emit words as soon as we see them.

22

All mappers send list of (key, value) pairs to the reducer, where the key is word and value is
its count.
The reducer adds up all intermediate results. But it can now be a bottleneck.

Can we have multiple reducers like mappers?

23

. . .
S1 S2 S3 S19 S20

File.txt

(city, 1)
(waterloo, 1)

(city, 1)
(kitchener, 1)

…

… … … (university, 1)
(waterloo, 1)
(waterloo, 1)

(city, 1)
…+

(waterloo, 36)
(city, 500)

…

M
ap

Re
du

ce

23

Word Count in MapReduce
def map(line):

for word in line:

emit(word, 1)

def reduce(key, values):

sum = 0

for v in values:

sum += v

emit(key, sum)

The textbook calls it emit so I’m doing the same. In
MapReduce code it’s “context.write”

Emit / write means “this is the output of the function” – but it’s not returned, it’s output
asynchronously (i.e. the framework can handle the key-value pair in another thread while
your map function continues to process the rest of the line)

24

Problem

The Reduce server is getting too
much data! If the file was 10TB,
then more than 10TB will arrive!

Why? “some text” => (some,1)
(text,1)

Slightly larger!

25

Distribution

What if you have
multiple reducers?

Each reducer gets ALL
pairs for a given Key

26

MapReduce

Programmer defines two three functions:

map: (k1, v1) ⟶ List[(k2, v2)]
reduce: (k2, List[v2]) ⟶ List[(k3, v3)]
partition: (k2,v2,n ∈ ℕ) ⟶ [0,n)

Partition will default to a hash function that hashes the key and ignores
the value

In other words, partition takes a key-value pair plus the number of reducers (n) and assigns
it to one of the reducers (which are numbered starting from 0).
Although it is given the value as well as the key, you NORMALLY want to decide based only
on the key. Otherwise you’re kinda defeating the purpose, which ensuring that each
reducer gets ALL values for a given key.

It CAN make sense, if you want to split the key up depending on the values…but there’s a
better way to do that usually (secondary sort pattern, coming up soon)

27

Word Count in MapReduce, Less Pseudo,
More Code
def map(pos : Long, text: String):
for word in tokenize(text):

emit(word, 1)

def reduce(key: String, values: Collection of Ints):
sum = 0
for v in values:

sum += v
emit(key, sum)

def partition(key : String, reducer_count: Nat):
return hashcode(key) % reducer_count

28

29

. . .
S1 S2 S3 S19 S20

(waterloo, 1)
(kitchener, 1)
(waterloo, 1)

(city,1)
…

… … … (university, 1)
(waterloo, 1)

(city, 1)
(university, 1)

…

M
ap

Re
du

ce

(waterloo, 36)
(university, 500)

…

(city, 1800)
(kitchener, 500)

…
29

Shuffling

The jargon for “sending KVP to different reducers depending on what partition tells us” is
called “shuffling”. To me shuffling implies random and the partition is deterministic (that’s
the ENTIRE POINT) but guess what: nobody asked me what it should be named

Apache Hadoop is the most famous open-source implementation of MapReduce. The logo
is an elephant. Probably because they’re big, powerful, hard to control, and might rip you
in half if angered. Hadoop will probably not do the last one but you never know…CSCF set
up datasci for us and there’s a lot of configuration options I haven’t looked at

30

30

31

MapReduce Implementations

Google has a proprietary implementation in C++
Bindings in Java, Python

Hadoop provides an open-source implementation in Java
Development begun by Yahoo, later an Apache project

Used in production at Facebook, Twitter, LinkedIn, Netflix, …
Large and expanding software ecosystem

Potential point of confusion: Hadoop is more than MapReduce today

Lots of custom research implementations

31

Framework

• Assigns workers to map and reduce
tasks

• Divides data between map workers*
• Groups intermediate values

• Sorting pairs by key, determining
which pairs go to which reduce
worker

• Handles errors
• What if a worker fails / crashes?

All things the programmer doesn’t need to think about…except at a high level, potentially?
The * means “there’s more to talk about here, lets stick a pin in that” – Lets say the image
is relevant, it’s Hadoop moving data to workers in different data centers. We want to
minimize this!

32

mapmap map map

group values by key

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

Input

Output

Q: What’s the slowest operation here?
A: sending intermediate results from the mappers to the reducers

Follow-up Q: But not sending the data to the mappers? Why not?
A: Patience, young padawan.

33

Faster???

• How about only one value per key per
mapper?

def combine(key, values):
sum = 0
for v in values:

sum += v
emit(key, sum)

34

MapReduce

Programmer defines three four functions:

map: (k1, v1) ⟶ List[(k2, v2)]
combine: (k2,List[v2]) -> List[(k2, v2)]
reduce: (k2, List[v2]) ⟶ List[(k3, v3)]
partition: (k2,ℕ) ⟶ ℕ

Combine is an OPTIONAL thing the mapper / reducer MIGHT do when idle. Note that the
signature is the same as reduce, EXCEPT: input and output types are NOT allowed to be
different.
Conceptually it should always be producing ONE key-value pair, since the whole point is to
combine many values into one for the same key. The signature allows shenanigans and/or
malarky. Keep this to a minimum, or avoid entirely.

35

mapmap map map

group values by key

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

Input

Output

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

This is just “liberated” from the textbook, with powerpoint assigning random colours. I had
to remove some arrows to make it all fit and I’m very sad about that.

Note: The flow isn’t quite so linear. “combine” happens during map (or doesn’t happen at
all) – grouping by values also happens DURING map, and then the values are shuffled to
reducers to finish the grouping. The reducers can also use combine when merging
intermediate files.

36

Combine

• Combine MIGHT be the same as reduce
• if k2 = k3, v2 = v3 then it would be legal to

do
• It also might not

• Even if legal, it might be inappropriate!
Meaning, it runs but gives the wrong
answer

37

Averages

• Combine can’t be the same as Reduce
• Why?

• Mean(2, 3, 4) => 3
• Mean((Mean(2, 3), 4) => 3.25

We’ll circle back to this after a brief detour into all the stars I was putting beside things

38

Averages
def map(k, v):

emit(k, (v, 1))

def combine(k, vals):

sum = 0
count = 0
for (v in vals):
sum += v[0]

count += v[1]
emit(k, (sum, count))

def reduce(k, values):
sum = 0
count = 0
for ((s, c) in values):
sum += s
count += c

emit(k, sum / count)

39

Physical View

What’s Hadoop doing behind the
scenes?

Right: Two worker nodes watching the sun rise while waiting for data

40

41

split 0
split 1
split 2
split 3
split 4

worker

worker

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input
files

Map
phase

Intermediate files
(on local disk)

Reduce
phase

Output
files

Adapted from (Dean and Ghemawat, OSDI 2004)

Physical View

Map side:
Map outputs are buffered in memory in a circular buffer
When buffer reaches threshold, contents are “spilled” to disk
Spills are merged into a single, partitioned file (sorted within each partition)
Combiner runs during the merges

First, map outputs are copied over to reducer machine
“Sort” is a multi-pass merge of map outputs (happens in memory and on disk)
Combiner runs during the merges
Final merge pass goes directly into reducer

42

Mapper

Reducer

other mappers

other reducers

circular
buffer

(memory)

spills (disk)

merged spills
(disk)

intermediate files
(disk)

Combiner

Combiner

Distributed Group By in MapReduce

Barrier between map and reduce phases
But runtime can begin copying intermediate data earlier

Let’s Get (More) Physical

What does a data center really look
like?

Really.

43

Left: Top view of a server
Right: the two top figures are the front of the server with two storage configurations: 1)16
2.5 inch drives 2) 8 3.5 inch drivers
Right: bottom is the back of the server. We can see network interfaces (7)
(11 is a network port too, this is an IPMI port for OOB (out-of-band) management)

44

The anatomy of a server

44

We put multiple servers in a server rack. There is a network switch that connects the
servers in a rack. This switch also connects the rack to other racks.
How Embarassing: this rack clearly has different servers! These look to be 3U chassises in a
5 foot rack. Bottom seems to be a ventilation unit? IDK, I’m not a sysop.

45

The anatomy of a server rack

45

Clusters of racks of servers build a data center. This is a very simplistic view of a data center.

46

The anatomy of a data center

46

https://youtu.be/XZmGGAbHqa0

47

The anatomy of a data center
Google’s data center video

47

Capacity, latency, and bandwidth for reading data change depending on where the data is.
The lowest latency and highest bandwidth is achieved when the data we need is on our
local server.
We can increase capacity by utilizing other servers but at the cost of higher latency and
lower bandwidth.

48

Storage Hierarchy

Local Machine
L1/L2/L3 cache, memory, SSD, magnetic disks

capacity, latency, bandwidth

Remote Machine
Same Rack

Remote Machine
Different Rack

Remote Machine
Different Datacenter

48

https://colin-scott.github.io/personal_website/research/interactive_latency.html

49

Demo

Latency numbers every programmer
should know

49

50

How can we store a large file on a distributed system?

Distributed File System

50

Assume that we have 20 identical networked servers each with 100 TB of disk space. How
would you store a file on these server? This is the fundamental question in distributed file
systems.

51

. . .

100 TB 100 TB 100 TB 100 TB 100 TB

S1 S2 S3 S19 S20

200 TB

File.txt

How do you store this file?

51

We can split the file into smaller chunks.

52

. . .

100 TB 100 TB 100 TB 100 TB 100 TB

S1 S2 S3 S19 S20

File.txt

Divide into smaller chunks

52

And assign the chunks (e.g., randomly) to the servers.

53

. . .

100 TB 100 TB 100 TB 100 TB 100 TB

S1 S2 S3 S19 S20

1

File.txt

2 3 4 5 6 7 8 Assign chunks to servers

53

SHARDING

If a server that contains one of the chunks fails, the files become corrupted. Since failure
rate is high on commodity servers, we need to figure out a solution.

54

1  S1
2  S3

…
8  S19

. . .

100 TB 100 TB 100 TB 100 TB 100 TB

S1 S2 S3 S19 S20

File.txt

What happens when a server fails?!

54

If each chunk is stored on multiple server, if a server fails there is a backup. The number of
copies determines how much resilience we want.

55

. . .

100 TB 100 TB 100 TB 100 TB 100 TB

S1 S2 S3 S19 S20

1

File.txt

2 3 4 5 6 7 8 FAULT TOLORANCE
Store each chunk on

multiple servers

REPLICATION

55

56

Hadoop
Distributed
File System (HDFS)
Adapted from Erik Jonsson (UT Dallas)

57

Goals of HDFS

• Very Large Distributed File System
• 10K nodes, 100 million files, 10PB

• Assumes Commodity Hardware
• Files are replicated to handle hardware failure
• Detect failures and recover from them

• Optimized for Batch Processing
• Provides very high aggregate bandwidth

57

HDFS is not like a typical file system you use on Windows or Linux. It was specifically
designed for Hadoop. It cannot perform some of the typical operations that other file
systems can do like random write. Instead it is optimized for large sequential reads and
append only writes.

58

Distributed File System

• Data Coherency
• Write-once-read-many access model
• Client can only append to existing files

• Files are broken up into blocks
• Typically 64MB block size
• Each block replicated on multiple DataNodes

• Intelligent Client
• Client can find location of blocks
• Client accesses data directly from DataNode

58

Note that the namenode is relatively lightweight, it's just storing where the data is located
on datanodes not the actual data.
May still have a redundant namenode in the background if the primary one fails
HDFS client gets data information from namenode and then interacts with datanodes to get
that data
Note that namenode has to communicate with datanodes to ensure consistency and
redundancy of data (e.g., if a new clone of the data needs to be created)

59

Adapted from (Ghemawat et al., SOSP 2003)

(file name, block id)

(block id, block location)

instructions to datanode

datanode state
(block id, byte range)

block data

HDFS namenode

HDFS datanode

Linux file system

…

HDFS datanode

Linux file system

…

File namespace
/foo/bar

block 3df2

Application

HDFS Client

HDFS Architecture

59

60

Functions of a NameNode
• Manages File System Namespace

• Maps a file name to a set of blocks
• Maps a block to the DataNodes where it resides

• Cluster Configuration Management
• Replication Engine for Blocks

60

61

NameNode Metadata
• Metadata in Memory

• The entire metadata is in main memory
• No demand paging of metadata

• Types of metadata
• List of files
• List of Blocks for each file
• List of DataNodes for each block
• File attributes, e.g. creation time, replication factor

• A Transaction Log
• Records file creations, file deletions etc

61

62

DataNode
• A Block Server

• Stores data in the local file system (e.g. ext3)
• Stores metadata of a block (e.g. CRC)
• Serves data and metadata to Clients

• Block Report
• Periodically sends a report of all existing blocks to the NameNode

• Facilitates Pipelining of Data
• Forwards data to other specified DataNodes

62

63

Block Placement Policy
• Current Policy: 3 replicas will be stored on at least 2 racks

• One replica on local node
• Second replica on a remote rack
• Third replica on same remote rack

• Rebalance might later move this to a third rack

• Clients read from nearest replicas

63

Compromise between safety and efficiency. If all your data is on one rack, all it takes is one
little fire to lose it all! But, inter-rack communication has higher latency, lower bandwidth
than intra-rack, so the remote replica is sent to one rack, and assigned to two nodes there.
Load balancing, resharding, etc. might cause the third replica to move to a third rack. Will
never have all 3 replicas in one rack.

This is the DEFAULT! You can change this policy if you want to. You can have a replica
factor > 3 if you want. You can have a replica factor of 2, for that matter…but shouldn’t.

64

Heartbeats

• DataNodes send
heartbeat to the
NameNode

• Once every 3 seconds
• NameNode uses

heartbeats to detect
DataNode failure

64

65

Replication Engine

• NameNode detects DataNode failures
• Chooses new DataNodes for new replicas
• Balances disk usage
• Balances communication traffic to DataNodes

65

Balance Disk Usage – Each HDD should have approximately the same usage
Balance Traffic – If a node / rack is currently quite busy with traffic, don’t assign it too many
reshards. (BUT, it might be perfectly OK to handle an intra-rack resharding)

HDFS Demo

• Dan – open PuTTY and show them how to do some stuff?

• Students viewing this on the webpage –
• Ummm, google “HDFS Demo”, the first one on Google is

good I think

66

67

Terminology differences:
GFS master = Hadoop namenode

GFS chunkservers = Hadoop datanodes

Implementation differences:
Different consistency model for file appends

Implementation language
Performance

Google File System (GFS)

67

68

Hadoop Cluster Architecture

68

SAN: Storage Area Network

69

How do we get data to the workers?
Let’s consider a typical supercomputer…

Compute Nodes

SAN

69

This makes sense for compute-intensive tasks as the computations (for some chunk of
data) are likely to take a long while even on such sophisticated hardware, so the
communication costs are greatly outweighed by the computation costs. For data-intensive
tasks, the computations (for some chunk of data) aren’t likely to take nearly as long, so the
computation costs are greatly outweighed by the communication costs. Likely to
experience latency and bottleneck even with high speed transfer.

70

Compute-Intensive vs. Data-Intensive

Why does this make sense for compute-intensive tasks?
What’s the issue for data-intensive tasks?

Compute Nodes

SAN

70

If a server is responsible for both data storage and processing, Hadoop can do a lot of
optimization. For example, when assigning mapreduce tasks to servers, Hadoop considers
which servers contain what part of the file locally to minimize copy over network. If all of
the data can be process locally where it is stored there will be no need to move the data.

71

What’s the solution?
Don’t move data to workers… move workers to the data!

Key idea: co-locate storage and compute
Start up worker on nodes that hold the data

71

This figure shows how computation and storage is co-located on a Hadoop cluster.
Node manager manages running tasks on a node (e.g., if we have spare resources, do the
next job assigned to us)
Resource manager is responsible for managing available resources in the cluster

72

DataNode

Linux file system

…

Node Manager

worker node

DataNode

Linux file system

…

Node Manager

worker node

DataNode

Linux file system

…

Node Manager

worker node

NameNode Resource Manager

Putting everything together…

72

73

73

The combiner may or may not run while merging spills on the mapper side. It also may or
may not run when merging partitions on the reducer side. The framework will decide this
as part of optimizing the job schedule.

74

Mapper

Reducer

other mappers

other reducers

circular
buffer

(memory)

spills (disk)

merged spills
(disk)

intermediate files
(disk)

Combiner

Combiner

Back to Combiners in MapReduce

Combiner
Design

• Combiners are like Reducers –
they have the same signature

• A reducer can have different
key types

• Combiners are optional
• May not be run
• May run once
• May run many times

Reminder: If the reducer has k2 = k3, v2 = v3, then it MIGHT work as a combiner. But it also
might not!

75

Computing the mean
def map(key : String, value: Int):

emit(key, value)

def reduce(key: String, values: List[Int]):

sum = 0

count = 0

for value in values:

sum += value

count += 1

emit(key, sum / count)

(a, 7)
(a,18)
(c, 4)
(b,1)

(c, 10)
(a, 3)

…

Note that we cannot have a combiner here! The reducer won’t work (why?) and there’s
not really a way to create a different function that will work, either.

76

Computing the mean (v2)
def map(key : String, value: Int):

emit(key, value)

def combine(key: String, values: List[Int]):
for value in values:

sum += value
count += 1
emit(key, (sum, count))

def reduce(key: String, values: List[(Int, Int)]):
for (v, c) in values:

sum += v
count += c

emit(key, sum / count)

(a, 7)
(a,18)
(c, 4)
(b,1)

(c, 10)
(a, 3)

…INVALID

This isn’t valid. Combine is OPTIONAL. It MUST have the same input and output types!
This design incorrectly assumes that combiners are always run.

77

Computing the mean (v3)
def map(key : String, value: Int):

emit(key, (value, 1))

def combine(key: String, values: List[(Int, Int)]):
for (v, c) in values:

sum += v
count += c
emit(key, (sum, count))

def reduce(key: String, values: List[(Int, Int)]):
for (v, c) in values:

sum += v
count += c

emit(key, sum / count)

(a, 7)
(a,18)
(c, 4)
(b,1)

(c, 10)
(a, 3)

…

The fix is to change the mapper to emit the same type as the combiner will.

78

Performance

Input size: 200m integers, 3
unique keys

V1 (baseline) ~120 seconds
V3 (combiner) ~90 seconds

79

I wanna go fast

Combiners improve performance by
reducing network traffic

Combiners work during file merges.
• Local filesystem is faster than

network access

But memory is faster than the filesystem

80

Computing the mean (v4)
class mapper:

def setup(self):

self.sums = Map()

self.counts = Map()

def map(self, key, value):

self.sums[key] += value

self.counts[key] += 1

def cleanup(self):

for (key, count) in counts:

emit(key, (sums[key], count))

(a, 7)
(a,18)
(c, 4)
(b,1)

(c, 10)
(a, 3)

…

Yes, you should avoid remembering things because you might end up trying to remember
too much. However, if you’re sure there won’t be too many things, then you can!
Functional programming isn’t a prison. You can deviate, you should just be careful when
you do so.

Think at scale: How many keys are there? Can the mapper hold a count and sum in
memory for every single key??? If it can, this is OK. If it can’t…then it’s not OK. That’s all
there is to it.
Remember to always ask these questions! Remember “probably fine” means “not fine”.
Be certain.

81

In-Mapper Combine

Preserve state across calls to map

Advantage: Speed

Disadvantage: Requires memory management

I prefer to think of “IMC” as meaning “In-memory combiner” since that’s how it works, and
you can do the same technique on a reducer, too.

That might seem strange because everything is already grouped by key, but remember, the
reducer is allowed to change the key-types and can emit whatever you want it to, so it can
often make sense to use IMC in your reducer, too!

82

Performance

Input size: 200m integers, 3
unique keys

V1 (baseline) ~120 seconds
V3 (combiner) ~90 seconds
V4 (IMC) ~60 seconds

83

Discussion: Can we do this for word frequency?

class mapper:
def setup(self):

counts = HashMap()
def map(self, key: Long, value: String):

for word in tokenize(value):
counts[word] += 1

def map_cleanup():
for (key, count) in counts:
emit(key, count)

Probably? It’s usually safe to assume less than 1M unique words. If your counter is int,
that’s 4MB for the counts, Maybe another 8MB for the keys??? Assume 50% storage
inefficiency and 24MB should be enough. Famous last words.

Once again note that this is python-like pseudocode, not actual python. (It’s close though,
if there were MapReduce python bindings. Replace HashMap with counter, replace counts:
with counts.items() in the cleanup loop)

84

New Problem: Term Co-Occurrence

Mij: number of times word i and word j
coöccur in some context

E.g. how many times is i followed
immediately b j in a sentence

M is N x N, where N is the vocabulary

This is just one possible definition for what “context” means.
Note the umlat over the second o. This is actually a diaeresis, the New Yorker does this
to indicate a syllable break. Most people use a dash, e.g. co-op but coöp is just the
kind of pretentiousness I can get behind!

85

Two Approaches

Pairs Stripes

Sorry, the PowerPoint stock photo engine failed to find a good picture for “pairs” so I made
do…

Pair – We’ll be computing individual Cells
Stripe – We’ll be computing individual Rows

86

Pairs

Mapper
Input: Sentence
Output: ((a, b), 1), for all pairs of words a, b in the sentence.

Reducer
Input: pair of words, list of counts
Output: Pair of words, count

In this case the reducer function can also serve as the combiner.

87

Pairs, In Pseudocode

def map(key : Long, value: String):

for u in tokenize(value):

for each v that coöccurs with u in value:

emit((u, v), 1)

def reduce(key: (String, String), values: List[Int]):

for value in values:

sum += value

emit(key, sum)

Note that we can pick whatever definition of cooccurrence we want…it might just mean “is
at the next index”. That’s the power of pseudocode! Best language

88

Pairs Analysis

• Easy to implement
• Easy to understand
• That’s a lot of pairs!
• Combiner won’t do much. Why?

The combiner won’t do much because there are N x N potential keys. Most keys will have
few entries, so there will be few cases where the combiner reduces the number of pairs.

89

Stripes

Mapper
Input: Sentence
Output: (a, {b1:c1, b2:c2, …, bm:cm}), where:
a is a word from the input
b1 … bm are all words that coöccur with a
ci is the number of times (a, bi) coöccur
{} means a map (aka a dictionary, associative array, etc)

In this case the reducer function can also serve as the combiner.

90

Stripes, Pseudocode

def map(key: Long, value: String):
for u in tokenize(value)

counts = {}
for each v that coöcurs with u in value:

counts(v) += 1
emit(u, counts)

def reduce(key: Long, values: List[Map[String->Int]]):
for value in values:

sum += value
emit(key, sum)

Here adding two Maps means taking the union of the keys, and setting the value to be the
sum of the two values if it occurs in both Maps, otherwise taking the value from the single
map that has it. You MIGHT need to write that code yourself, but that’s what puts the
pseudo in pseudocode

91

Stripes Analysis

• Fewer key-value pairs to send
• Combiners will do more work
• Map is a heavier object than a single

Int
• More computationally intensive
• Will the map fit in memory???

92

Cluster size: 38 cores
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3), which
contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

93

Pairs

Stripes

93

So Always Use Stripes?

No. There’s a tradeoff.

“Easier to understand and implement” is NOT bad.
You’ll see after A1, mwhahaha. (For CS431 this only hits you on A2, don’t get
complacent)

For English words and normal sentence lengths, the stripe fits
in memory easily. It won’t always work out that way.

94

Another Problem, Relative Frequencies

𝑓 𝐵 𝐴 =
𝑁(𝐴, 𝐵)

𝑁(𝐴,∗)

Where N(A, B) is number of coöccurrences of A and B, and
N(A,*) is the sum of N(A,x) over all x

Why do we want to do this?

How do we make it fit into MapReduce?

Note that N(A,*) might be “number of occurrences of A” depending on the definition of
occurrence / co-occurrence. It also might not!

95

Stripes

A -> {B1:C1, B2,C2, ….}

Easy-Peasy. If N(A, B) =
N(B, A) then N(A,*) is just
C1+C2+…

The stripe gives us all the
information we need!

96

Pairs?

def reduce(key:Pair[String], values: List[Int]):
let (a, b) = key
for v in values:

sum += v
emit((b, a), sum / freq(a))

Hmmm, what’s freq(a)? We don’t know that until we’ve processed all
keys of the form (a, *)

• ‘*’ Here means “everything”, like it does with command line, etc.
• This is also called the “marginal sum of a” – Accountants would jot numbers in the

margin of a spreadsheet (a physical one, not Excel) and add them all up at the end, so
this is known as a “marginal” value. (The meaning most people are familiar with is
“barely” – because if you’re on the margin you’re “only just” on the page)

97

(a, b1) → 3
(a, b2) → 12
(a, b3) → 7
(a, b4) → 1
…

(a, *) → 32

(a, b1) → 3 / 32
(a, b2) → 12 / 32
(a, b3) → 7 / 32
(a, b4) → 1 / 32
…

Reducer holds this value in memory

f(B|A): “Pairs”

For this to work:
Emit extra (a, *) for every bn in mapper
Make sure all a’s get sent to same reducer (use partitioner)
Make sure (a, *) comes first (define sort order)
Hold state in reducer across different key-value pairs

98

“Define sort order” means override the Compare methods for the data type…if you have
to. Here we don’t assuming the words are words (i.e. just letters). * is before a so
lexicographically “*” comes first…the empty string might work even better!

98

Pairs, Mapper and Partitioner

def map(key: Long, value: String):
for u in tokenize(value):

for v in cooccurrence(u):
emit((u, v), 1)
emit((u, “*”), 1)

def partition(key: Pair, value: Int, N: Int):
return hash(key.left) % N

99

Pairs, Mapper and Partitioner (improved)

def map(key: Long, value: String):
for u in tokenize(value):

for v in cooccurrence(u):
emit((u, v), 1)

emit((u, “*”), len(cooccurrence(u))

def partition(key: Pair, value: Int, N: Int):
return hash(key.left) % N

While we can maybe hope our combiner will compact the “*” counts down, it will be very
little extra work to only send one * per token per line – this obviously only makes a
difference for definitions of co-ocurrnece where a token will co-occur with many other
tokens on the same line. If not, then the length is always 1 so it makes no improvement – it
also doesn’t need to.,

100

Pairs, Reducer

marginal = 0

def reduce(key: Pair, values: List[Int]):
let (a, b) = key
for (v in values):

sum += v
if (b == “*”):

marginal = sum
else:

emit((b, a), sum / marginal)

Stats term

Marginal variable: A variable that can be found by summing all values in a column (or row)
and writing the value in the margin. C(A,*) is a marginal variable because it can be found by
summing all C(A,x) values. It’s not piece of paper
So there is no actual margin, but a name is a name.

Will this work? Yes, at least in Hadoop using English words. Remember, Hadoop at least
sorts the keys. Pairs will sort lexicographically by the first key, and then the second. So
(a,*) comes before any (a, b) because the ASCII code of * is 42, which is less than the lower-
case letters…you could always use the empty string instead of “*” if you’re worried..

101

Pairwise
Mutual
Information
(PMI)

On the assignment, you’re doing
something SIMILAR

𝑃𝑀𝐼 𝑥, 𝑦 = log
𝑝(𝑥, 𝑦)

𝑝 𝑥 𝑝(𝑦)

This requires* two passes

On the assignment “cooccur” means
“both occur on the same line”

* It doesn’t PER SE but it’s way more trouble than it’s worth

The reason it “requires” two passes is that you need to make sure that (x,*) and (y,*) are
both available on the reducer that has (x,y), which requires that all reduces have all
marginal counts.
You can do this in one pass but it’s quite awkward to do and ends up not really being faster.

451:

To do it in two passes, you should have one pass doing modified word count (counting
number of lines that contain the token rather than counting all occurrences of the token) –
then in pass two you’re not concerned with the marginal sums – in the reducer code you’ll
load the output files from pass 1 in the “setup” method and then put it all into a hash table
(aka a Java Map object)

431

You’re not using MapReduce for A1 so “two passes” isn’t needed – you can put marginal
sums into one dictionary and pairs into another.
(In fact you should probably use a “stripes” approach where instead of pairs[(a,b)] you’d be
looking for stripes[a][b] – the reason being with the stripes approach, it’s really easy to see
all tokens that cooccur with a, that’s just the contents of stripes[a]. To get the same thing

102

from pairs you need to traverse the entire thing!)

102

PMI, Yeah, What’s It
Good For?

Absolutely Nothing!

PMI is useful for establishing “semantic
distance” between tokens

Tokens with similar lists of cooccurrences
sorted by PMI likely have similar meaning.

Semantic distance is (usually) a [-1,1] ranged metric, where 1 means “exact same meaning,
including connotations, i.e. perfect synonym” and -1 means “exact opposite meaning i.e.
perfect antonym”

This is one way to generate word embeddings. More on that later! But the TL;DR is we
want each word should be a unit vector with a lot of dimensions, such that dot product
between two vectors (i.e. the cosine of the angle between the vectors) is approximately
the same as the semantic distance between those words.

Note that A1+A2 do not involve files big enough to get us meaningful word similarities,
generally speaking. But this is what things like word2vec do to generate their embeddings.

103

Sweet, Delicious Hints

A1 suggests multiple passes as something
you might want to consider.

CONSIDER IT STRONGLY

(In other words, it’s possible to do with a
single pass but there’s no gain to doing this.
This is not a challenge)

Hints = Macarons. The fanciest, most difficult to make cookie. Yet always slightly
disappointing. The PowerPoint AI made this connection, not me. Spooky

104

