
Data-Intensive
Distributed
Computing
CS431/451/631/651

Module 3 Interlude - Scala

1

What is
Scala?

Scala is a language built on top of the JVM
Key Features:

• Both Functional and Object Oriented
• Every value is an object, every function is a

value
• Even methods are values!

2

Hello Scala
Or, “How to print stuff”
// Comment
println(“Hello, World”) // print a String
println(2 + 2) // print an Int
println(1,2,3) // 3x Int print Combo!

printf(“Welcome to Scala, CS%d”, 451)

Explanation: If you give println multiple values, it puts them in parentheses automatically

3

(Bonus Slide) – Strings

Strings use the same format as C, C++, etc.
“This is a string with a newline\n”

There are also format strings

f“2 + 2 is ${2 + 2}”
becomes
“2 + 2 is 4”

If the expression does not contain whitespace, then the {} are optional, e.g. you can insert
variable X’s value using $X

4

Rosetta Stone

Jimmy Lin has Scala versions of some
of the MapReduce examples in Bespin.

Because Scala uses the JVM, you can
write MapReduce code in Scala.

5

Variables

var vi : Int = 3 // mutable integer
val ci : Int = 5 // constant integer

vi = 4 // valid
ci = 4 // invalid, cannot reassign to val

IMPORTANT
var and val refer to mutable and immutable REFERENCES. You can have a var reference to
an immutable object (in fact, Int is an immutable object, you cannot make a 3 into a 4, but
you can make a var that refers to 3 become a var that refers to 4 instead!)

Similarly (although more surprising to some) you can have a val reference to a mutable
object!

6

Interactive

You can compile Scala to java class files but can also run it in an
interactive shell.

<For your entertainment, Dan will now demonstrate the shell. It’ll look
like this>

scala> 2 + 2
res0: Int = 4

7

Assignment

All your favorite operators are here!

var x = 3 // type inference! x is an Int
x = 4 // assignment!
x += 2 // assignment!
x = “foo” // invalid! x is Int, not String

8

Collections

var myArray = Array(1, 2.0, 3)

Q: What type is myArray?
A: Array[Double]

Q: Square Brackets?
A: Yes. C++/Java would say Array<Double>, Scala says Array[Double]

9

Any

var myArray = Array[Any](1, 2.0, 3)
OR
var myArray : Array[Any] = Array(1, 2.0, 3)

The any type can hold any value. Now the array is a mix of Int and
Double values.

10

Array Operators

scala> Array(1,2) ++ Array(3)
Array[Int] = Array(1,2,3)
scala> Array(1,2) :+ 3
Array[Int] = Array(1,2,3)

++ makes a new array by concatenating two arrays
:+ makes a new array by appending a single value

11

Array Operators

++= and :+= exist

They do NOT modify the Array!

> val a = Array(1,2)
> a :+= 3
Error: :+= is not a member of Array[Int].

Cannot convert to assignment as a is not
assignable

12

Maps

Two forms of Map

Default is immutable.

> Map(“a”->3, “b”->4)
Map[String,Int] = …
> scala.collection.mutable.Map(“a”->3, “b”->4)
scala.collection.mutable.Map[String,Int] = …

You might have to import scala.collection.mutable._ first though

13

Maps (bonus slide)

(“a” -> 3) is just alternate syntax for (“a”, 3)
(“a” -> 3, “b” -> 4) is equivalent to ((“a”, 3), (“b”, 4))

It’s usually used for Maps to make key-value pairs more expressive.
Also to avoid parentheses.

14

A Tale of Two Maps

Immutable
> var m = Map(“a”->3)
> m += (“b” -> 4)

map + pair makes a new map
+= is assigning this new map to m

Mutable
> val m =

mutable.Map(“a” -> 3)
> m += (“b” -> 4)

mutable.Map has its own += operator
that mutates the existing value.

NOT trying to reassign m!

Further explanation: When you use an operator on an object, it tries to call that object’s
method by that name.
When you run += on an IMMUTABLE map, there is no such operator, so it falls back to the
default. The default += operator calls the LHS’s + operator, then assigns the result to the
LHS identifier
(That’s why the earlier example said that there were TWO problems with :+= 1. It has no
such method. 2, it has :+ but the LHS is not assignable, so that won’t work either)

Mutable Map has a += method that mutates the existing map

I CANNOT STRESS ENOUGH THAT YOU NEED TO KEEP THIS STRAIGHT ON THE
ASSIGNMENTS!
You almost always want to use an Immutable map. If you want to add to it imperiative
style, make it var, but keep it immutable!
If you have a Mutable map, do not use ++ or +: on it! That WILL make a new one, which
requires a full copy. SLOW.
If it’s Immutable, it also makes a new one, but in constant time.

15

Isn’t an
immutable
hash map
inefficient
to update?

Who said a HashMap means Hash Table?!

An Immutable Hash Map is a Trie that uses
the hash code as the “String”.

Immutable trees that don’t involve
rotations! Producing a new tree based on
the old one is O(h). The tree has a fixed
height.

Racket immutable Hash Maps work the same way. For some definition of “same”. A Trie is
a Trie. Only the details differ.

16

Loops

for (i <- 1 to 10) println(i) // stops after 10
for (i <- 0 until 10) println(i) // stops before 10

You can add conditionals

for (i <- 0 until 10 if i % 2 == 1) println(i)

To and until are operators. (1 to 10) is a Range.inclusive object.

You can also use “by” to specify the step. (10 to 1 by -1) to count down, (1 until 10 by 2) to
count up by 2s.

17

Loop to Vector

> for (i <- 1 to 10) yield i + 1
… = Vector(1,2,3,4,5,6,7,8,9,10)

That’s right, for loops have a value! Or they can, if you yield values

18

For loops and collections

val m = Map("a"->1, "b"->2)
val a = Array(1,2,3,4)

for (i <- a) println(i)
for ((k, v) <- m) printf(“%s -> %d\n”, k, v)

<- m is iterating over key-value pairs
By putting a tuple here, k and v get bound to the key

and value (respectively)

Tragic but you can’t write for ((k -> v) <- m) …


19

Functions

def f(p1 : t1, p2 : t2, …) : [return type] = expr

Return type is optional (if it can be inferred).
If you use return statements it cannot infer the type. Don’t worry
about WHY

Parameters’ types are mandatory

Return is optional (will return value of final expression)
The expr is usually a {block} like in C++, but doesn’t need to be

20

Function Calls

Exactly like C
F(x,y)

If a function has no parameters you don’t need ()

F() is the same as F

(This can make it a bit hard to tell if something is a field or a method
with no parameters)

When trying to pass a function as a value, you may have to write higherOrderFunction(f _) ,
the underscore lets it know that you’re not trying to call f, but pass it as a value

21

Functions

def add(x : Int, y : Int) = x + y

Returns x + y. Infers return type is int. No need for {braces}

If this makes you uncomfortable, use braces

22

Anonymous Functions

(x : Int, y : Int, …) => x + y
(x : Int) => x * x

Parameters types are mandatory (unless passing directly to a higher order
function)

Array(1,2,3).map((x) => x * x)

The map method is expecting a function with an int parameter, so it will infer
that x is intended to be int

Also if you don’t need a parameter type, you don’t need the parens around (x). x => x * x
will work

23

More Anonymous Functions

If you only use a parameter once, you can use an underscore
expression.
• This ONLY works as a parameter to a higher order function

List(1,2,3).map(_ + 1)
res0: List[Int] = List[Int](2,3,4)

An expression with n underscores is interpreted as an anonymous
function with n parameter. 1st parameter = 1st underscore, etc

Underscore functions are great if they’re expressive and easy to follow.
They also have the potential to make code so concise that it’s hard to understand.

24

Unit?

Unit is the Scala name for Void. A special type that indicates the lack of
a value.

C++ functions that were “void” are “Unit” functions in Scala.

If you see “Expected X but got Unit” you probably forgot to return
something, or your function ended with a valueless expression

25

match

Match is the coolest. It’s one of my fav things in Racket and it’s in Scala too!

def intToTroll(x : Int) : String = x match {
case 0 => “None”
case 1 => “One”
case 2 => “Two”
case 3 => “Many”
case _ => “Lots”

}

This is a Pratchett reference. Discworld trolls have only four numbers, 1, 2, many, and lots.

26

Match

So it’s switch? You have a VERY low bar for cool, sir.
Au Contraire, it’s so much more! The thing after case can be a pattern!

def f(x : Any) : String = x match {
case List(y) => f(y)
case y : String => y
case _ => “?”

}

It’s easy to take down hypothetical students by putting words in their mouth. Take that,
sassy yet fictional student! I don’t know…I hate the “I know what you’re thinking”
Rhetorical device, and yet here I am using it. If I get silly with it it’s, like, ironic or
something? Is it cool again?

Ahem.

List(y) will match any single element list, and its single element will be referred to as “y”.
This “y” will have the type Any, since this clause matches any subclass of List
y : String will match any String, and name it y. x is still Any but y is String. x and y refer to
the same object, but y knows more about it (it knows that it’s only allowed to point to a
string!)

27

Option, Some

Option[A] is a collection that can hold up to 1 A type value.
It’s either None, or a Some[A]. To get the A value from a Some, use get

def maybeAdd1(x : Option[Int]): Option[Int] = x match {
case Some(y) => Some(y + 1)
case None => None

}

This function, if given an Int, will add 1 to it. If given None, will return None.

Also possible to write:
case None => None
case _ => Some(x.get + 1)

The Option class has a .get method. For Some(x), .get will return x. For None, it will throw a
NoSuchElementException

28

Maps

Didn’t you mention these already?

Yeah, it’s a brief pitstop now we’ve
seen Option.

Map[K,V].get(k) returns Option[V]

Map[K,V](k) returns a V or throws a
key not found exception.

29

Interoperability with Java

Scala can interact with Java objects.
Scala constructs don’t work with Java collections, but you can convert.
Step 1:
import scala.collection.JavaConverters._

Step 2:
for (i <- javaArrayBuffer.asScala) { … }

When you import the JavaConverters library, it injects an “asScala” method into the Java
classes that will give you a Scala iterator suitable for use in for loops etc.

30

The End…or The Beginning?

I didn’t mention how Classes, Traits,
Mixins, sealing, and a bunch of other
things work. You (mostly) don’t need
them for the assignments.

I’ll point out new features as we come
across them in Spark.

See how the plant breaks through the pavement. That’s definitely a metaphor. For what?
shrug
Either the Powerpoint AI is insightful and poignant…or it’s just suggesting random clipart
for no particular reason? Life…uhhhh….finds a way.

31

