
Data-Intensive
Distributed
Computing
CS431/451/631/651

Module 4 – Analysing Text

1

This Module’s Agenda

Language Models

Natural Language Processing

Information Retrieval / Search

2

Structure of the Course

“Core” framework features
and algorithm design

A
n

al
yz

in
g

T
ex

t

A
n

al
yz

in
g

G
ra

p
hs

A
n

al
yz

in
g

R
el

at
io

n
al

 D
at

a

D
at

a
 M

in
in

g

3

This all
seems
LAME!

First of all, how dare you

Walk before you run

Language Models are about so
much more than Word Counts and
PMI!

4

Natural
Language
Processing
NLP for short

5

Probabilistic Model
P(w1,w2,…,wk)

– The probability of encountering the sentence w1 w2 … wk

What good is this?
• Machine Translation

P(“High winds expected”) > P(“Large winds expected”)
• Spell Checker that’s not fooled by homophones

P(“Waterloo is a great city!”) > P(“Waterloo is a grate city!”)
• Speech Recognition

P(“I saw a van”) > P(“Eyes awe of an”)

We want to be able to take a sentence with k words, and assign a probability to it. This lets
us rank alternatives. Of course this doesn’t tell us WHERE those alternatives even came
from, but one step at a time!

6

Probabilistic Model
P(w1,w2,…,wk)

– The probability of encountering the sentence w1 w2 … wk

How LLMs work*:
1. Given w1w2…wk-1 obtain probability distribution for wk

2. Sample word from distribution
3. Repeat until you generate the special “stop” word.

* Basically

The tricky part is generating the probability distribution, of course! And…there are a lot of
different sampling techniques to choose from.

Again, not an AI course so we won’t get into too much detail

7

Probabilistic Model
P(w1,w2,…,wk) =
P(w1) x P(w2,…,wk|w1) =
…
P(w1) x P(w2 | w1) x … x P(wk|w1, w2, …, wk-1)

P(“I saw a van”) = P(“I”) x P(“saw” | “I”) x P(“a” | “I saw”) x
P(“van” | “I saw a”)

Q: Can we actually use this?

Chain rule – P(A, B) = P(B) x P(A | B) – Like with PMI

Question: Is this reasonable? How long is a typical sentence? 15-20 words in modern
writing. 70+ in ye olden times. PMI took us two passes, will this take 20-70 passes?

8

A: No*

The size of a sentence is unbounded (even if we
might assume a reasonable maximum length)

“Intractable” is the best word to use

Let’s say we set the sentence length to max of
20

Let’s say there are 100k commonly used English
words

100k20 = 10100

Fun language quirk: The dictionary says tractable means easy, so intractable means not
easy. In a bit of coy understatement, “intractable” in Mathematics actually means
“impossible”

Both of those assumptions are underestimates!

No* - as I just said, LLMs work this way, but they don’t’ actually base the conditional
probability of the next token on ALL of the surrounding context.

9

Smaller Limit: N-Gram

Basic Idea: Probability of next word only depends on the previous (N – 1) words

P(wk|w1,w2,…wk-1) ≈ P(wk|wk-N+1, wk-N+2,…,wk-1)

N = 1 : Unigram Model- P(w1,w2,w3,…) = P(w1) P(w2) … P(wk)

N = 2 : Bigram Model- P(w1,w2,w3,…) = P(w1) P(w2|w1) … P(wk|wk-1)

10

Google uses
N-Grams for
Suggestions
(N is small)

The meme is intentionally deep fried. I’m told you Zoomers like that

11

People also use N-grams. Not really. Maybe. It’s classified.

12

Do it with Hadoop!

• Unigram: P(w) = C(w) / N
• Bigram: P(wi, wj) = C(wi, wj) / N

P(wj|wi) = P(wi,wj) / P(wi) = C(wi,wj) / C(wi)

You can probably figure out trigrams yourself.

Seem Familiar?

If it’s not, I’m sorry about your mark on A1
State of the art rarely goes above 5-grams (call them that not penta-grams)

13

Example: Bigrams
^ I am Sam $
^ Sam I am $
^ I do not like green eggs and ham $

Counts

(^, I) = 2
(^, Sam) = 1
(I, am) = 2
…

Probabilities

P(I | ^) = 2/3
P(Sam | ^) = 1/3
P(am | I) = 2/3
P($ | Sam) = 1/2
….

“Training Corpus”

Note: We never cross sentence boundaries

The probability P(a | b) = C(b, a) / C(b, *)
Recall that C(b,*) means “count of all pairs that start with b”

14

Example: Bigrams
P(I like ham)
= P(I | ^) P(like | I) P(ham | like) P($ | ham)
= 0

Thoughts?

Probabilities

P(I | ^) = 2/3
P(Sam | ^) = 1/3
P(am | I) = 2/3
P($ | Sam) = ½
….

15

16

No More Zeros

P(s) = 0 means “sentence s is impossible”.
Not true (probably).

“The pirate was purple and wanted eleven candy ants.”

Your language model didn’t think anybody would say that.
Take THAT, computer!

Explanation for the weird sentence. My son Charlie.
1. He likes pirates (and ghosts, and Halloween in general
2. He likes purple
3. After the rogers “we want to earn Canadians trust back” he said “Candy ants trust”

His latest work is “Thank you for using self chicken”

17

Playing it Smooth
If a single n-gram in the sentence has never been seen, P = 0

Just one unusual word takes a sentence from “likely” to “impossible”
That’s a “discontinuity”

Removing 0s makes the distribution “smooth”
How can we remove 0s?

18

Robin Hood

“Take from the rich, give
to the poor”

(Or, maybe, universal basic
income? Every n-gram gets
a non-zero probability)

I picked this picture from Office’s suggestions because it’s hilariously bad. I might be
training it to give bad suggestions. Or funny suggestions.
Oh, also, my Robin Hood is the furry Disney Robin Hood. Pretty sure he put a scarf on his
head at one point in that movie. So I guess it’s related after all. Spooky.

19

Laplace Smoothing
Start each count at 1, not 0.
Time tested and simple
Counts

(^, I) = 2
(ham, $) = 1
(I, like) = 0
(like, ham) = 0
…

Counts (Smooth)

(^, I) = 3
(ham, $) = 2
(I, like) = 1
(like, ham) = 1
…

20

Laplace Smoothing (bigram probabilities)

𝐿 2

What’s V? Vocabulary size. Since every pair of words (A,B) has a +1,
we need to add V2 to N.

You can imagine how to apply this to trigrams, 4-grams, etc.

Common question: “Shouldn’t it be V(V-1)?” Nope. For A1+A2 cooccurrence we did not
count the pair (X, X), but for bigrams we do, e.g. you might have the classic sentence “John
had “had”, while Carol had “had had”. “Had had” had had a bigger impact than “had” had
had.

21

Other Smoothing Techniques
• Good-Turing – Used by Good and Turing as part of cracking

Enigma
• Katz backoff – “backoff” means “if n-gram says 0, try (n-1)-gram”
• Jelinek Mercer – Interpolate between n-grams and unigrams

• PJM(A,B) = 𝜆𝑃(𝐴, 𝐵) + 1 − 𝜆 𝑃 𝐴 𝑃(𝐵)

• Dirichlet Smoothing, Witten-Bell – Ways to pick 𝜆
• Kneser-Ney – Current Best Practice

• Google (used to?) use this for Google Translate, implemented
on their MapReduce framework

22

Hidden Markov Model
(Hmm)

Used a lot in
Bioinformatics

Also used a lot in NLP

Popular with Witchers

This slide is here for 3 reasons
1. The Hmm meme
2. I used them a fair bit in Bioinformatics
3. The fact that it’s somewhat relevant (weak third place)

23

HMM and NLP

• Turn an audio stream into a word stream
Phoneme

Recognition

• Doesn’t REPLACE N-grams, but helps add context
to words

• Buffalo buffalo Buffalo buffalo buffalo buffalo
Buffalo buffalo

Part-of-Speech
(PoS) tagging

Buffalo is an animal, a city, and a verb that means, essentially, to intimidate. That means
the above nonsense is technically grammatical and means:
“Buffalo from Buffalo that are intimidated by other buffalo from Buffalo intimidate a third
group of buffalo from Buffalo.”

24

Hadoop HMM

• We don’t use HMM on any
assignments

• Grads, feel free for your
projects!

• The textbook discusses how to
adapt HMM training for
MapReduce

• Surprise! Highly parallelizable
• It’s iterative, which means Spark is

a good alternative!

25

Transformers
(More than
Meets the
Eye)

Q: Hey, I saw that ChatGPT can do 8K,
16K, even 64K context…how is it not all
zeros???

A1: It’s a Transformer Neural Network,
not a table of n-gram counters. Words
will have latent probability – no
smoothing needed

A2: “Self-Attention” – In a context of
4000 words, only some words are
important.

The Yi model can do 200K context! It’s pretty good for a 34 billion parameter model.

26

Topic Shift: Searching!
(“Information Retrieval”)

27

28

Author
Searcher

“tragic love story” “fateful star-crossed romance”

Concepts

Query Terms

Concepts

Document Terms

The Central Problem in Search

These two things should match! They don’t look similar though, do they? No words in
common. Language is hard!

DocumentsQuery

Hits

Representation
Function

Representation
Function

Query Representation Document Representation

Comparison
Function Index

offlineonline

Abstract IR Architecture

29

Representation Matters

Computers can’t “understand” (or can they?)

We need to tell them what “relevant” means.

Simple form: “Bag of Words”

Assumptions: terms are independent, relevance is irrelevant,
the concept of a “word” is well defined

All of those assumptions are obviously wrong. However, so what? “First let’s assume a
spherical cow” etc.

30

天主教教宗若望保祿二世因感冒再度住進醫
院。這是他今年第二度因同樣的病因住院。 ريجيفماركوقال - باسمالناطق

الإسرائيليةالخارجية - قبلشارونإن
بزيارةالأولىللمرةوسيقومالدعوة
المقرطويلةلفترةكانتالتي،تونس

عاملبنانمنخروجهابعدالفلسطينيةالتحريرلمنظمةالرسمي 1982.

Выступая в Мещанском суде Москвы экс-глава ЮКОСа заявил
не совершал ничего противозаконного, в чем обвиняет его
генпрокуратура России.

भारत सरकार ने आिथŊक सवőƗण मŐ िवȅीय वषŊ 2005-06 मŐ सात
फ़ीसदी िवकास दर हािसल करने का आकलन िकया है और कर सुधार
पर ज़ोर िदया है

日米連合で台頭中国に対処…アーミテージ前副長官提言

조재영기자= 서울시는 25일이명박시장이 `행정중심복합도시''
건설안에대해 `군대라도동원해막고싶은심정''이라고말했다는
일부언론의보도를부인했다.

What’s a word?

These are all news blurbs. Top to bottom – Chinese, Arabic, Russian, Hindi, Japanese,
Korean
Oh, there’s also the inscription from The One Ring. The script is elvish, but the words are in
the black tongue of Mordor, which I shall not utter here.

31

Stick to English

What words does the
document contain?
• Tokenizer (remove

punctuation)
• Case Folding (treat things as

lower case, put Unicode into
canonical form)

• Bush vs bush

Unicode issue: é is a single character. Or it’s e followed by the “acute” combining
diacritics. Unicode defines a canonical form, the “standard” way to represent a
string that may have many equivalent forms.

The thing I did with coöp vs co-op vs coop is also relevant! How’d’ya like that
setup? The long game.
Capitalization is not important, except when it is.

We will continue to depend on Jimmy’s tokenizer and not worry about confusing
Jack Black with a darkly coloured device for lifting cars.

32

“What’s in the
bag?”

AKA
Foreshadowing ML

A word is an integer? What about a vector of floats?

A representation is often called an embedding
You take a high dimensional object e.g. a
text document, and embed it in a lower-
dimensional plane

Distance between embeddings: cosine
Distance between words: “semantic similarity”
Goal for embeddings: D(e1, e2) ~ D(w1,w2)

E.g. D(“love”, “romance”) is low, so their embeddings
should have a similarly low distance.

Guess what my friends? PMI is a great way to estimate the “semantic similarity” of words.
PMI gives similarity measures similar to cosine similarity! PMI = 0 => terms are
uncorrelated aka orthogonal. Cos = 0 => terms are uncorrelated aka orthogonal

33

Bag of Words

Documents

Inverted
Index

Bag of
Words Word Count (A0)

Current Topic

We’re ignoring syntax, semantics, knowledge of language, meanings of words, etc –
however, BOW is often used with vector embeddings (e.g. word2vec)

34

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

1

1

1

1

1

1

1 2 3

1

1

1

4

blue

cat

egg

fish

green

ham

hat

one

green eggs and ham
Doc 4

1red

1two

What goes in each cell?
boolean
count
positions

Cs451 – Terminology – Inverted Index. Maps context to documents. Forward Index. Maps
documents to context. (Seems strange to me, so a book’s index is “inverted”?)

35

DocumentsQuery

Hits

Representation
Function

Representation
Function

Query Representation Document Representation

Comparison
Function

Inverted
Index

offlineonline

Abstract IR Architecture

36

Scaling Assumptions

• Queries are small
• Postings are not

• There are a LOT of documents
(100M? 1B? 10B?)

• 1B docs * 1 bit = 120MB / unique
word

• How many unique words?

37

38

bkTM
M is vocabulary size
T is collection size (number of documents)
k and b are constants

Typically, k is between 30 and 100, b is between 0.4 and 0.6

Vocabulary Size: Heaps’ Law

Heaps’ Law: linear in log-log space

Surprise: Vocabulary size grows unbounded!

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

k = 44
b = 0.49

First 1,000,020 terms:
Predicted = 38,323
Actual = 38,365

Manning, Raghavan, Schütze, Introduction to Information Retrieval (2008)

Heaps’ Law for RCV1

39

Saving Space, Postings List

1

1

1

1

1

1

1 2 3

1

1

1

4

blue

cat

egg

fish

green

ham

hat

one

3

4

1

4

4

3

2

1

blue

cat

egg

fish

green

ham

hat

one

2

1red

1two

2red

1two

This saves a lot of space because most terms do not appear in most documents (so most
rows are mostly 0s). Most? Not all?

40

41

N number of elements
k rank
s characteristic exponent

Postings Size: Zipf’s Law

Zipf’s Law: (also) linear in log-log space

In other words:
A few elements occur very frequently

Many elements occur very infrequently

https://www.youtube.com/watch?v=fCn8zs912OE&t=253s&ab_channel=Vsauce

Manning, Raghavan, Schütze, Introduction to Information Retrieval (2008)

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

Zipf’s Law for RCV1

Close enough

42

Zipf’s Law for Wikipedia

Rank versus frequency for the first 10m words in 30 Wikipedias (dumps from October 2015)

43

MapReduce to the Rescue

• input (docid: doctext)
• output (term: (docid, freq))

• (can add metadata, e.g. pos)
Map –Map –

• input (term : Iterator[(docid,
freq)])

• output (term : Postings List)

Reduce
–

Reduce
–

See any scaling issues?

44

Pseudo-Code, Mapper

def map(docid: Long, doctext: String):
counts = counter()
for term in tokenize(doctext):

counts.add(term)
for term, freq in counts:

emit(term, (docid, freq))

We can assume each document has only a few million unique terms, so the counter will
easily fit in a mapper’s memory

45

Pseudo-code, Reducer

def reduce(term: String, postings: Iterator[(Long, Int)]):
p = list()
for docid, freq in postings:

p.append((docid, freq))
p.sort()
emit(term, p)

Problem? How big is this list going to be???

Problem?

How big does p get? Zipf’s law says “usually small, sometimes not small”. Sorting is O(n log
n). That’s not ideal if n is large. Isn’t Hadoop good at sorting? (It is.)
Besides which, Hadoop already is sorting (by keys) so really we’re sorting twice (even if the
second sorts are on a much smaller n, it’s still not nothing).

46

If you did the readings you remember…

• “Secondary Sorting Pattern”
• (Another “fancy term for simple concept”)

• (A : (B, C)) => ((A, B) : C)
• Remember to make the partitioner send (A, x) to the

same partition for all x
• Now it’s already sorted by document ID

• Cool, but how does that save us space?

Why does this make it faster? Well, the mappers are already sorting by key, so now instead
of two sort passes through the data, we’re only doing one! Additionally, if you have more
mappers than reducers (common) you have more machines doing the sort in parallel.

47

Delta Compression

Zipf’s Law works for US now

If a term is rare: There are not many
postings

If a term is common: The average
delta (docidi+1 – docidi) is small

48

Delta Encoding (AKA Gap Encoding)
If a sequence is ascending, you can instead write down only the “delta” (difference)
between elements:

Sequence: 1, 6, 11, 15, 22, 42, 49, 77

Gaps : 1, 5, 5, 4, 7, 20, 7, 28

49

Does that save anything though?

Not if your output
is Int.

Thing is, there are
more datatypes

out there!

50

VInt

Variable-Width Integer type (There’s also
VLong)

Uses 1-5 bytes to represent an Int (same range
as 4 byte fixed width)

How?

Need a way to indicate the length, that’s all!

Technically Vint and Vlong are exactly the same, writeVInt just passes the int along to
writeVLong

51

VInt Details

If x in [-112,127] – write using 1 byte – that leaves 16 options for other cases

Else: “Magic” byte 1000SLLL followed by L Bytes for x:
• x is x is non-negative
• -x - 1 if x is negative

1000 – (common prefix, indicates this is a special byte)
S – Sign: 0 = negative, 1 = positive.
L – Length, 3 bit two’s complement: 1 => 111, 2 => 110, 3 => 101, etc.

Note that this leaves room for lengths of up to 8 bytes for the magnitude – writeVInt is just
a wrapper for writeVLong
You don’t need to know the details for the exam, it’s just fun knowledge to have

52

VInt Examples

747 : requires 2 bytes and is positive:
(S = 1, LLL = 110)

1000 1110 0000 0010 1110 1011

-173131: requires 3 bytes and is negative:
(S = 0, LLL = 101)

1000 0101 0000 0010 1010 0100 0100 1010

747 as a 2-byte unsigned int

173131 - 1 as a 3-byte
unsigned int

You definitely will not be asked to do this yourself.

53

VInt
Compression ArrayWritable[VInt]

BytesWritable

Explain!
• No
• Array is storing

objects (HEAVY)
• Bytes is just a bunch

of bytes

Normalize using the LaForge version of the Drake meme. Levar Burton and LaForge are
heros and don’t you forget it.

More detailed explanation: Vint saves space when you have many packed together.
ArrayWritable doesn’t pack them together. You need raw bytes, and to use
WritableUtils.writeVInt

54

ArrayWritable[Vint]

Wrapper

VInt

Wasted
Memory

55

Detour! Other Bit-
Bashing Methods

• CS451: You don’t need to
use these, VInt is fine

• CS431: You don’t do an
indexing assignment at all

• (Sorry, it’s kinda fun)

A few reasons for this difference in courses
1. Spark doesn’t sort by key when reducing, so the secondary sort pattern can’t be

applied.
2. Spark makes Vint etc a bit tricker to use
3. Bespin has a starting point in Hadoop MapReduce, but not in Spark. So it would be a

lot more work for 431 students.

56

VLQ (Variable Length Quantity)

• This confused me because it’s used everywhere and often called VInt
or VarInt

• How it works: Slice number into septets. Use high bit to indicate
“continues”

Examples:
767 => 0010 1111 1111 [binary]

0000101 1111111 [7-tuples]
10000 101 0111 1111 [VarInt, 2 bytes]

74 => 0100 1010 [VarInt, 1 byte]

In a previous version of the slides I presented this as Vint – As it says above, this is usually
called Vint! I just assumed that’s what Hadoop used (this version only works for unsigned
ints, but there are variations that let the leading byte also indicate sign.

57

Simple-9
How many ways can you divide up 28 bits?

28 1-bit numbers
14 2-bit numbers
9 3-bit numbers [1 bit wasted]
7 4-bit numbers
5 5-bit numbers [3 bits wasted]
4 7-bit numbers
3 9-bit numbers [1 bit wasted]
2 14-bit numbers
1 28-bit number

• Why 28? 4 bit “selector”, 16
options. Only use 9 though.

• Extend to 64-bit
• 14 ways to divide 60

• Simple

• Works fairly well for gaps

58

We have to go deeper
Simple-9 (and Simple-14) work at the WORD level

Different ways to store a variable number of values in a single
word

VInt (or VLong) works at the BYTE level
Store a fixed range of values in a variable number of bytes

What about BIT-level?
Store a fixed range of values in a variable number of bits

59

Elias γ Code

Assumptions
• natural numbers with no upper bound

• like counts, for example
• small numbers are more common than large numbers

• gaps for common terms, for example
• term frequency within docs, too?

γ is gamma, fyi

60

Elias γ Code
Encoding x:
1. Let N = logଶ 𝑥

2. Write N 0s
3. Write x as an N+1-bit

number
This number starts with 1. Trust me

Decoding x:
1. Read 0s until a 1, call this

N
2. Interpret next N+1 bits as

a binary number
Including the 1

3. There is no step 3

γ is gamma, fyi

61

Does γ work well?

Does well for term frequencies (how many times the term appears in
the document)

Does OK for gaps, too

62

Underlying
Assumption

The Elias code assumes
the values are distributed
by a power law

Most numbers should be
small, or it doesn’t save
any space

63

Gap Distribution

What do you think the distribution of gaps looks like if you
have N document IDs and a term that matches M documents?

It…has a lot of binomials in it. It’s scary.

Unless you remember Stats, in which case it’s clearly a Poisson
distribution with γ = M/N

64

Simulated
gaps for 10
million
documents

y = 0.1131e-0.106x

R² = 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100

Pr
ob

ab
ili

ty

Gap Length

GAP PROB VS GAP LENGTH, N=10,000,000, M=N/10

This should be the
density function of a
Poisson distribution,

0.1e-0.1x

As we all know, the probability density for “waiting time” in a Poisson distribution with
parameter γ is γe-γt

Here γ = 0.1 and we can clearly see that the simulated distribution matches quite closely.

65

TF DF Distribution

The math here is
actually the same except
that the overall DF can
exceed N, and sampling
is done with
replacement.

TL;DR: Still a Power Law

66

Golomb
Code

For encoding positive integer x:
• Quotient and remainder when divided by

M
q = (x - 1) / M
r = x – qM – 1

q gets encoded in uniary (q 0s, then 1)
r gets encoded in truncated binary

Let z = ்

M = ୪୭(ଶ ି௭)

ି ୪୭(ଵି௭)
-- good for gap encoding

Number of documents (total)

Number of documents containing term

It’s a Polish surname
(Gołąb)
transliterated to English

Approximate as .ଽ

௭

Pronunciation key: ł is pronounced mostly as an l, but in some parts of eastern
Poland (and polish speaking Ukraine) it’s more like a w sound.
ą is pronounced somewhere around w “om” or “am” sound.

However, none of that really matters as Golomb himself said it as “Go-lam” so it
doesn’t really make any sense to dig deep into exactly what part of Poland we’re
talking about

That’s right, each term gets its own custom encoding scheme! Neat.

Note that this is for situations where we only care about “contains” or “doesn’t contain”,
not the number of times a term appears in a document

67

Golomb Encoding

Uniary
n is represented as n 0s, then a 1

5 => 000001
0 => 1
(Or you can switch 0s and 1s)

Truncated Binary
For numbers {0, 1, … n-1} :
k = logଶ 𝑛
u = 2k+1 – n

First u codewords:
First u codes with length k

Last n-u codewords:
LAST n – u codes with length
k+1

68

Truncated Binary

N = 15 i.e. set = {0, 1, … , 14}

k = floor(log215) = 3
u = 24 – 15 = 1

0 => 000
1 => 0010
2 => 0011
3 => 0100
…
14 => 1111

69

Golomb Code Examples

M = 12 (k=3, u = 4)

x = 52

q = (52 – 1) / 12 = 4 = 00001u

r = 52 – 12*4 -1 = 3 = 011t

encoded(x) => 00001011b

M = 32 (k=5, u = 32)

x =52

q = (52-1) / 32 = 1 = 01u

r = 52 – 32*1 – 1 = 19 = 10011t

encoded(x) => 0110011b

When M is a power of 2, these are also called “Rice codes” – Since u = m, there’s no
“truncated” binary, it’s just k-bit binary.

70

Golomb
Code in
MapReduce

We can’t calculate M without
knowing df, but we only know
that at the end!

(We solved that already with a
special key that sorts first)

71

What if we also want frequencies?

((blue, *), 1)
((blue, 2), 1)
((cat, *), 1)
((cat, 3), 1)
((egg, *), 1)
((egg, 4), 1)
((fish, *), 4) or 2???
((fish, 1), 2)
((fish, 2), 2)

1 2 3 4

3

4

1

2blue

cat

egg

fish 2

1

1

1

2 2

Orange = docid
Pink = freq (number of times term appears in that document)
(Term, *) = total freq? Or number of documents containing term? If we want to use
golomb codes, we need both

72

ID and
Frequency

It’s best to treat these as
independent

You can encode each with a
different approach!

(Don’t mix something ALIGNED like
VInt with something UNALIGNED
like Golomb)

73

Comparison
Indexing 181MB of Wikipedia sentences, including term frequency

SizeMethod
182MBUncompressed (Int)
78MBVInt
44MBGamma (both)
41.4MBGolomb (gap) + Gamma (freq)
41.2MBGolomb (both, different M)

It’s pretty normal for the index to be larger than the documents being indexed!

Why is it bigger? Well each term is using 8 bytes per document it appears in, while
common words tend to be short! (And the average is about 5 letters). – removing stop
words will make it smaller, but means that a user cannot search for stop words even if they
really want to! That might be OK but just be aware.

Going from Gamma to Golomb for the frequencies made it slightly smaller, but barely any.
Also need to collect both document frequency for terms, and total frequency (how many
times the word appears across all documents) – more messages for very little gain

74

One Last
Thing

There’s also the “Exponential Golomb Code”

Same thing, except you use an Elias Gamma
code to write the quotient instead of using
uniary.

It’s SLIGHTLY smaller than regular Golomb

75

MapReduce it?

The indexing problem
Scalability is critical

Must be relatively fast, but need not be real time
Fundamentally a batch operation

Incremental updates may or may not be important
For the web, crawling is a challenge in itself

The retrieval problem
Must have sub-second response time

For the web, only need relatively few results

76

That’s not to say we don’t want to distribute it! In fact we definitely do! There’s no way for
a single machine to handle thousands of concurrent users who all expect sub-second
response times!

76

Retrieval
Let’s assume everything fits in memory on one
machine

77

Boolean Retrieval

Remember: A set might be sorted by docid, but certainly isn’t sorted by relevance to the
query. It either matches the query, or doesn’t.

The next few slides present two different algorithms for computing hits based on the
posting lists for each term in the query.

78

(blue AND fish) OR ham

blue fish

ANDham

OR

1

2blue

fish 2

1ham 3

3 5 6 7 8 9

4 5

5 9

Boolean Retrieval

To execute a Boolean query:

Build query syntax tree

For each clause, look
up postings

Traverse postings and apply Boolean operator

79

Term-At-A-
Time

For each term, generate sets of documents
• AND = intersection
• OR = union
• NOT = negate

Analysis?

Not seems bad. Really bad. Not (rare term) => just about the whole internet. We SURE
about assuming this fits into memory???

It’s actually not bad, though. You can have a “negated” flag on a set, and
then just store its negation.

Also we only need 2 sets in memory at once. Easy to hold that many in memory (hopefully)

80

Term-At-A-Time

blue fish

AND

1

2blue

fish 2 3 5 6 7 8 9

5 9

2blue AND fish 5 9

blue fish

ANDham

OR 2blue AND fish 5 9

1ham 3 4 5

1ham OR (blue AND fish) 2 3 4 5 9

Since the postings are sorted by docID, AND / OR are modifications of the merge functions
from mergesort.
AND – only include a doc if the “next” doc from both postings is equal. OR – if both “next”
are equal, only include it once, otherwise same as normal merge

What about not? It’s best to have a flag for the set: “Inverted”. If an inverted set contains
5, it means the true set does NOT contain 5. (Now you have to modify merge though…)

81

Document-
At-A-Time

For each document, see if it passes the query

Since documents are in sorted order, modified
merge operation will work

Analysis?

Need to have the posting lists for each term in memory simultaneously! (but you can
stream them from the FileSystem I’m sure…)
Not makes things a bit awkward again.

82

Document-At-A-Time

Repeat: for the smallest “next doc” – does it match?
1 – has ham, include and advance “fish” and “ham” lists
2 – no ham, but does have blue and fish. Include.
3, 4, 5 – ham. Include.
6, 7, 8 – no ham, fish but not blue. Exclude
9 – fish and blue. Include

blue fish

ANDham

OR
1

2blue

fish 2

1ham 3

3 5 6 7 8 9

4 5

5 9

83

One More Thing…
Our index file is partitioned! We probably want to distribute lookup, even if
it’s not a MapReduce task we use.
Options:
• Leave the index partitioned by term

• Each index file has the COMPLETE collection for a SUBSET of terms
• Repartition by document ID

• Each index file has a SUBSET of the collection, but the index for ALL
terms

Which one makes the most sense?

Note that the textbook discussion of this is referring to Ranked Retrieval where there’s no
“or” or “not”. So with that restriction index partitioning isn’t TOO bad – but we’ll talk about
that in a bit here.

For Boolean Retrieval index partitioning is very tricky to handle – basically for the “term at
a time” algorithm shown, many (most?) operations will span partitions and will require a
shuffle (or shuffle-like operation, since we’re not using MapRed/Spark)

Document indexing is much nicer! Each partition has all terms so it can produce “these are
all hits from my partition” – the “reduce” action is then simple concatenation. No shuffle
(just collecting the results back to the user’s machine)

84

Ummm, unsorted?
A set of hits is fine…but we probably want them sorted by
relevance?

That’s a different problem: Ranked Retrieval!

Requires: relevance function R(q, d)

Note: A query “X Y Z W” might yield a high Relevance value even if
a document only contains terms X Y W.

85

Ranked Retrieval

Simplify the query. It’s now only a list
of terms (AND, but not strict – can be
missing some terms)

Need a way to weight a hit

86

Ranked Retrieval

• Can we just do Boolean Retrieval and then sort
by relevance?

• No
• Why?

• See last slide – searching for q = “x y z w” is
NOT the same as “x AND y AND z AND w”

87

One way to be relevant
• Terms that occur many times in one document should have high

weights (for that document)
• Terms that occur in many times in the entire collection should have

low weights

We need:
term frequency (times a term is used in a document)
document frequency (number of documents containing the given term)

88

TF-IDF

• wij – weight (relevance) of term i in document j
• tfij – number of occurrences of term i in document j
• dfi – number of documents containing term I
• N – total number of documents

The relevance of a document is the sum of the wi values

(Term Frequency and Inverse
Document Frequency)

𝑤𝑖𝑗 = 𝑡𝑓𝑖𝑗 log
𝑁

𝑑𝑓𝑖

89

Document-At-A-Time
For each document:
1. Score each query term, and add them all up
2. Accumulate best k hits

1. A min-heap is good for this

PRO: time is O(n log k), memory is O(k) – k probably a constant
CON: can’t terminate early, must look at whole document collection

Another pro – easily distributed

90

Term-At-A-Time
1. Collect hits and ranking for rarest term into accumulator
2. For each other term in the query:

1. If a document does NOT have that term, remove from
accumulator

2. Otherwise, add next term’s ranking to overall ranking

PRO: Can have early termination heuristics, will not normally need
to traverse all documents

CON: uses a lot of memory

91

Which to use?

Good question. There
are tradeoffs. No one
correct answer.

Depends a lot on the
query, too.

usually what’s done is the documents are partitioned by document ID with a “quality”
assessment. E.g. partition 0 is the BEST pages, partition 1 is lower quality but still good,
etc…
Then you can do document-at-a-time on the BEST partition and if that gets you enough hits
with high relevenency then you can stop.
So I guess they BOTH have early termination heuristics. Oops.

92

What about
synonyms?

1. Use word2vec on your document set
and create a table of synonyms:

if a user searches “love” grab
“love” and “romance” postings

2. Use doc2vec to create document
embeddings, then…use a Vector Database

[Not on exam, just a brief mention of “what’s next”]

93

Vector what
now?

Vector Database – Vespa, Pinecone,
ChromaDB, PostgreSQL with plugins

Uses HNSW (like a multidimensional skiplist!)
index

Given a query vector, finds the nearest
neighbours

“Just” need to turn documents (and queries)
into vectors!

[Not on exam, just handy to know]

94

