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Clustering
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Structure of the Course

“Core” framework features 
and algorithm design
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What the, we skipped relational data?
(Yes, the assignments flow more easily this way…maybe I should change the graphic…)
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Detour – Embeddings and Distance

Sometimes the feature vector is still too high-dimensional to work with!  

Example - text message with 140 characters: 256140 = really big & sparse

Possible Embedding – character 4-grams – 2564 = still really big, still sparse

Some models DO have 2 billion parameters.  A spam filter shouldn’t

Here each feature would be 0 or 1, meaning “does not contain this 4-gram” or “does”.  You 
could also have them be counts instead of strictly 0 or 1.  0 or 1 is easier.
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Reducing Dimensions

To reduce the dimensionality of a set of 
n-grams:
Hash them modulo some large prime 
(but much smaller than the original 
number of dimensions)

On the assignment: (mod 1,000,009)

1M << 4B : collisions are rare enough to 
ignore
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Some of the following diagrams 
are borrowed

Thanks to Jure Leskovec, Anand Rajaraman, Jeff Ullman 
(Stanford University)

• If a slide says that at the bottom:
• I’ve borrowed the whole slide, or 
• I’ve borrowed the diagrams and put my own 

words on them
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Fun Problem –
Near Neighbours

Problem:
• S – Set of Objects
• D(a,b) – Distance from object a to b
• t – maximum distance threshold
Goal: Find all unordered pairs (a,b) s.t.
D(a,b) ≤ t

6



Scene Completion Problem 

7J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org

[Hays and Efros, SIGGRAPH 2007]



Scene Completion Problem 

8J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org

[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors, 20,000 image database



10 nearest neighbors from a collection of 20,000 images

Scene Completion Problem 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors, 20,000 image database



10 nearest neighbors from a collection of 2 million images

Scene Completion Problem 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors, 2.3 million image database



There are lots of ways to measure image 
similarity

Similar Visually Similar Subject

Visual Similarity is tricky – You need a model of human vision + cognition. Or just accept it’s 
only going to be OK.  Or use a neural network (they’re essentially magic)

Similar Subject – Well…I guess you need the same things. A way to extract “what’s in the 
image” and then a regular inverted index to find other images with the same “caption” – I 
know of one such thing, BLIP. It’s a neural network again.
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Template Based 
Protein Folding

Given a sequence, find proteins in 
database with a similar sequence.
• NOT as easy as hamming distance –

not all mutations are equal.
• Changing Leucine to Isoleucine 

(nearly identical)
• Changing Leucine to Lysine 

(most properties different)
• Also insertions / deletions 

Why – Proteins with similar sequences tend to have similar shapes (folds). Well, they might 
be different at the places that differ, but it’s at least a good starting point (if you start from 
scratch instead of a template, it’s called “ab initio” which is Latin for “from scratch” “from 
the start”)
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Document Similarity

Near-Duplicate Detection is 
important for IR
• Lots of places that mirror 

usenet content
• Many news site post the same 

articles (newswire, freelance 
writers, etc.)

• But not IDENTICAL – editor 
edits, website has own 
header/footer/”related 
article” links
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Today’s Objective
Given high-dimensional datapoints x1, x2, … xn and some 
distance function d(x1, x2):

Find all pairs of datapoints xi, xj s.t. d(xi,xj) < s 

The naïve approach: just compute d(xi, xj) for all i,j
O(n2) – not very big data

Magic: O(n) – normal to want, and possible to achieve. 

Why do we care?  The core technique applies to ML!

The fingerprint is because we’re going to be creating signatures (fingerprints) 
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Hey!  “Magic” isn’t an explanation!

Sure, but it caught your attention.  

Q: How can you find all identical items in a collection of n?
A: Hash table – insert is O(1) – only need to compare collisions, not 

all pairs!

This is O(n)  (assuming a low collision rate)

We assume that collisions due to identical hash codes will occur so rarely that we can 
ignore them. So collision is only due to the size of the table. 
With a sufficiently large table, you can make the number of expected colissions sub-linear 
i.e. o(n)  -- (the little o is on purpose) 
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Locality Sensitive Hashing (LSH)

For X, X’ such that d(X,X’) = c

Normal Hash Function: If you know X and h(X): No idea what h(X’) 
is

LSH Hash Function: If you know X and h(X): E[dhash(h(X), h(X’)] = c

Translation: items that are “close” have hash codes that are 
“close” (on average)

Things to note:
1. It’s only the expected value. So it’s OK if sometimes the distance is more than c, and 

sometimes less. (IDEALLY we want this to be a normal distribution)
2. The distance metric is dhash not d, because the hash function probably does NOT return 

the same type as X)
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(Scalar) LSH 
to find Near 
Neighbours 

1. Make a Hash Table
2. Use buckets that are w wide (and 

overlapped, so items go in multiple 
buckets)

3. Most values xi, xj s.t. d(xi, xj) < c will have at 
least 1 bucket in common
1. Most values > c will NOT share a common 

bucket

This works if you have a scalar hash code, but not if we have a VECTOR code (or “signature 
vector” to its friends)
We’ll get to that later.
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Brilliant, so all we need is a LSH 
function?

Yup, we “just” need a LSH function.  

We now spend the rest of the lecture 
“just” constructing such a creature.

“just” strikes again!
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What’s Distance, Anyway?
Measuring distance between text documents:

Remember, one goal is detecting duplicate 
news stories

• Diff:  Too sensitive to rearrangement  
• Word Count / Bag of Words: not sensitive 

enough to rearrangement
• Edit Distance: too difficult to compute
• doc2vec cosine distance: (too advanced)
• N-Grams: Just right

Too advanced for this course I mean…
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Jaccard

How do n-grams give us a distance measure?  Jaccard distance!  This is 
used for sets.  
Do we have sets?
Yes: A document embedding is the set of n-grams it contains.

𝑠𝑖𝑚 𝐶1, 𝐶2 =  
𝐶1 ∩  𝐶2

𝐶1 ∪  𝐶2

  

d C1, C2 = 1 − sim(C1, C2)
3 in intersection
7 in union
Jaccard similarity= 3/7
Jaccard distance = 4/7

What if you can’t make sets?  Well, you’ll need a different LSH technique.  Sorry, this is only 
for sets!
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Reminder: We want this 
for embeddings!
An embedding of binary (0 or 1) features is a set

If we have embeddings with dense floating point 
features we’ll just have to do something else!

Fortunately, n-gram embeddings are pretty good
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What n should I use?

Depends on if you’re doing byte-level or word-level n-grams
Depends on what size of documents

For byte-level:
• 4-5 for short documents (tweets, sms, emails)
• 8-10 for long documents (webpages, books, papers)

For word-level:
• 2-3 for short documents
• 3-5 for long documents

The sentiment analysis paper used byte-level 4-grams, and so does the spam filter 
assignment!
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Jaccard for Multisets

Just adjust the definitions of union and 
intersection

Union: If C = A U B then C[k] = max(A[k], B[k])

Intersection: If C = A ∩ B then C[k] = min(A[k], 
B[k])

|A| = the sum of the counts for all keys in A.

With that being said, n-gram embeddings are usually regular sets, not multisets. The counts 
for each n-gram don’t (usually) make enough of a difference to justify the large increase in 
the size of the embedding.

Also the LSH we’re about to see doesn’t work for multi-sets so you’d need to come up with 
a different function.
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Sets and Vectors

Reminder: A Set can be represented as a bit 
vector

1. Assign natural numbers 0…n to the 
elements of the Universe set

2. Bit vector at index i is 1 if the set contains 
element I

3. Benefit: union/intersection are bitwise or 
/ bitwise and

I already made the opposite argument when I said our feature vector is a set!
But a little repetition never hurts
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Reminder: LSH

A Hash function h( ) such that:
• If C1 and C2 are highly similar, then with high probability:

• h(C1) = h(C2)

• If C1 and C2 are highly dissimilar, then with high probability:
• h(C1) ≠ h(C2)

• Different approach needed for each definition of “similarity”

For Jaccard distance: Min-Hashing!

h( )  - My Physics 12 teacher did this with all function definitions to avoid h(x) and 
confusing people with other X’s we’d already been talking about.
That or he was weird.  Maybe both.  Either way I’m carrying on the tradition.
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Min-Hashing – Two Views

Let C be a set of integers (each N-
gram has been numbered)

Imagine you have a random 
permutation 

h(C; ) = miniϵC (i)

Let C be a set of n-grams (n-tuples 
of strings)

Imagine you have a random 
enumeration function 

h(C; ) = miniϵC (i)

Enumeration of all n-grams, not just C

Q: What on Earth is an enumeration function?
A1: It’s a bijection that maps some set S onto the range [1, |S|]

(And if it’s been a while, a bijection is a function that’s one-to-one and onto)
A2: It’s a function that enumerates a set of objects

Q: And enumerate means? Asking for a friend…
A: It means “count”.
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Are we Permutating or Enumerating?

Yes.

Permutating assumes the n-grams have already been 
enumerated and represented as a bit-vector

Enumerating assumes they are still a set of string tuples and 
we are assigning each n-gram an integer.

It’s much easier to create a random permutation than it is to create a random n-gram 
enumerator. Being mathematically equivalent isn’t the same thing as being computationally 
equivalent.
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Collection as a Matrix

• Row = Elements of Set (i.e. n-gram)
• Column = one Set (i.e. document)
• 1 in (i,j) -> n-gram i is in document j

Next Objective: Compute a signature for each
column (document) s.t |sig| ≪ |col|

Ideally, column similarity = signature similarity 0101

0111

1001

1000

1010
1011

0111 
Documents

N
-G

ra
m

s
Repetition for Emphasis: row 1 is n-gram #1. It’s NOT the string “1”, but whichever n-gram 
string has been assigned (arbitrarily) as the “first” n-gram.
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Representing a Permutation
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The n-gram at index 1 is moved 
to index 2

The n-gram at index 4 is moved 
to index 6
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Representing a Permutation
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In other words the rule is that if you process S and  in lockstep, the value you get from 
is where the corresponding value from S gets moved to.

You can also define a permutation using the opposite rule, where the value you get from 
tells you what index from S to retrieve (So you’re processing  and the output in lockstep) 

Remember: This kind of thing is important when you have a lot of data! You usually want to 
join the inputs together in this way. (Especially here, where we’re not actually going to 
generate the complete permutation of the set…you’ll see why in a second, if I haven’t 
already blabbed about it)

It depends which is worse: random access of the output, or random access of the input!
In our situation, we don’t need to compute the full (S) , just one element at a time, so this 
approach is more efficient! All memory access is sequential. 
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The Min-Hash Property

Claim: Pr[h(C1; ) = h(C2; )] = sim(C1,C2)
Proof:

Let y = h(C1 U C2)
It must be the case that y = h(C1; ) or y = h(C2; ) – Why?

Is it in both though?  There are |C1 ∩ C2|things in both.
And |C1 U C2| possible values for y.  

So the probability it’s in both =  


ଵ
 ∩ 

ଶ


ଵ
 ∪ 

ଶ

= sim(C1, C2)

Why?  The permutation is random.  So, every single element y in the union has the same 
chance of being placed first by the permutation.  So it’s a uniform random choice!

Think of it this way: The only part of the permutation that matters are the entries in 𝐶1 ∪
 𝐶2

The way to generate a permutation is: pick a random value, that’s entry 1. Then pick 
another (without replacement), that’s entry 2.
Since entry 1 is “smallest”, a random permutation means picking the smallest element 
uniformly 

Or think of it this way: If some elements are more likely to be small than others, how could 
you possibly call that unbiased?
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So, h(C ;) is a LSH?

Yup

Let A, B be docs s.t. S(A,B) = s

h(A; ) = h(B; ) with an s% chance

1 2
1 2

That’s the property we wanted for an LSH

However, the variance is through the roof, and although the expected value is right, two 
hash codes are either distance 0, or distance 1, with nothing in between. That’s not good 
enough.
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Signatures

Generate K independent permutations

Sig(C)[i] = h(C;πi)  i.e. the min-hash defined by the ith permutation

The signature is K x 4 bytes (400 if K=100)   assuming no more than 232

n-grams

Much smaller than column C!

Why we want more than 1: 

1. We’ll see the math in a bit here
2. We wanted a normal distribution. We don’t have one with one min-hash function, but 

as the number of trails (number of hash function) goes to +infinity, the distribution will 
converge on the normal distribution. (Central Limit Theorem) 
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Similarity of 
Signatures

sim(Sig1,Sig2) = percentage of entries that 
are equal.   

NOTE: Signature is NOT a set, cannot use 
Jaccard similarity!

We know: Pr[h(C1) = h(C2)] = sim(C1,C2)

E[sim(Sig1,Sig2)] = sim(C1, C2)

(This is true no matter how many entries the sig has, but the more it has, the lower the 
variance)
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Min-Hashing Example
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Signature matrix M

1212

5
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6

3
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2

4

1412

4

5

1

6

7

3

2

2121

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org

2nd element of the permutation 
is the first to map to a 1

4th element of the permutation 
is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (N-Grams x Documents) Permutation 
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Min-Hashing Example

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org

Similarities:
1-3      2-4    1-2   3-4

Col/Col 0.75    0.75    0       0
Sig/Sig 0.67    1.00    0       0

Signature matrix M
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4

1412
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2121

0101

0101
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1001

0101 

Input matrix (N-Grams x Documents) 
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6

1

5

Permutation 
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Implementation

sig[C][i] =  for all C, I
for each row index j in each column C:
if C[j]:

for each hash function index i:
sig[C][i] = min(sig[C][i], hi(j))

Problem: computing hi is prohibitive!
In fact even writing down hi is prohibitive
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Why so Prohibitive?

How many n-length permutations are there?  n!
(That’s not an excited answer, it’s n factorial)

How many bits needed to distinguish each possible permutation?
Ω(lg(n!)) = Ω(n lg n)

That’s too many bits!  If doing byte-level 4-grams, 
232 x 32 = 137,438,953,472 = 16GB

Why? If there are n! of them, if you have an encoding that averages less than Ω(n lg n)
bits, there will be fewer possible encodings than there are 
permutations to be encoded! That’s a contradiction because
1. The concept of an encoding is that each unique object 

gets a unique encoding
2. Pigeonhole principle means that at least 1 encoding 

represents multiple objects

Those darn pigeons.
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Alternative?

Let hi be a k-universal hash function

for each hash function index i:
sig[C][i] = min(sig[C][i], hi(j))

Conceptually: let i be the “permutation” we get if we sort using 
hi as the key function – break ties arbitrarily

Question for the class: Is that going to be the same as a permutation chosen uniformly at 
random?
(No, it’s not, but it’s close enough for government work)
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K-Universal Hash Function

Pick K constants – c1 … ck

h(x) = (c1 + c2x + c3x2 + … ckxk-1) mod p p being a large prime

K-Universal means h(x1), h(x2), …. h(xk) will not correlate (but after that 
they might)

Is that good enough? Maybe
Pr[hk(y)=min(hk(X))] = (1 / |X|)(1 ± e-k)
Only need a 4-universal function for the probability to be within 2% of the 
Jaccard distance
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Hold on, let’s check the map…

Goal: Find all pairs of documents (A,B) s.t. Sim(A,B) >= s for some 
score s (e.g. 80%)

General Idea: LSH – A hash function where similar documents have 
similar hash codes

Our LSH – MinHash – If two documents have Jaccard similarity s, 
then E[f(A,B)] = s
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OK, so…

Documents A,B are a “candidate pair” if MinHash(A,B) >= 
s.

Dan, my friend, does that not still require all pairwise 
comparisons?

LSH requires a hash table, too. Not just the codes!
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MinHash 
Table

A MinHash signature is an n-vector, not a 
scalar hash code.

How do you assign based on that?

1. An n-dimensional table (Or, equivalently, a 
1-dimensional table where you use a 
secondary hash function on the sig vector)

2. n independent 1-dimensional tables
3. A secret third thing?

Problems
1 – Two documents with 80% similarity aren’t THAT likely to have identical signatures so 
we’ll miss a lot of them.
2 – Two documents with 10% similarity are likely to have at least 1 value in common in 
their signature vectors

(We COULD count how many times A,B collide but then we’re back to 
pairwise comparisons, not practical at scale)
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The Secret Third Thing 
(Middle Ground)

Slice the signature vector into b equal 
sized “bands” of r values each

Have b 1-dimensional tables, and 
consider (A,B) a candidate pair if they 
collide in any of the tables
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Partition M into b Bands

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org 45

Signature matrix  M

r rows
per band

b bands

One
signature

1212

1412

2121
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Big 
Assumption

Our hash tables will have a 
lot of buckets

(Or we’ll use secondary 
hashing – Either way, we’re 
going to ignore collisions)

This assumption simplifies 
the math (but doesn’t 
change the correctness)

46



Matrix M

r rows b bands

Buckets
Columns 2 and 6
are probably identical 
(candidate pair)

Columns 6 and 7 are
surely different.

Hashing Bands

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Example of Bands

Assume the following case:
• Suppose 100,000 columns of M (100k docs)
• Signatures of 100 integers (rows)
• Therefore, signatures take 40Mb
• Choose b = 20 bands of r = 5 integers/band

• Goal: Find pairs of documents that 
are at least s = 0.8 similar

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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1412

2121
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C1, C2 are 80% Similar
• Find pairs of  s=0.8 similarity, set b=20, r=5
• Assume: sim(C1, C2) = 0.8

• Since sim(C1, C2)  s, we want C1, C2 to be a candidate pair: We 
want them to hash to at least 1 common bucket (at least one 
band is identical)

• Probability C1, C2 identical in one particular 
band: (0.8)5 = 0.328

• Probability C1, C2 are not similar in all of the 20 bands: 
(1-0.328)20 = 0.00035 

• i.e., about 1/3000th of the 80%-similar column pairs 
are false negatives (we miss them)

• We would find 99.965% pairs of truly similar documents

49
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org
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C1, C2 are 30% Similar
• Find pairs of  s=0.8 similarity, set b=20, r=5
• Assume: sim(C1, C2) = 0.3

• Since sim(C1, C2) < s we want C1, C2 to hash to NO 
common buckets (all bands should be different)

• Probability C1, C2 identical in one particular band: 
(0.3)5 = 0.00243

• Probability C1, C2 identical in at least 1 of 20 bands: 1 -
(1 - 0.00243)20 = 0.0474

• In other words, approximately 4.74% pairs of docs with 
similarity 0.3 end up becoming candidate pairs

• They are false positives since we will have to examine them (they 
are candidate pairs) but then it will turn out their similarity is 
below threshold s

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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LSH Involves a Tradeoff
• Pick:

• The number of Min-Hashes (rows of M) 
• The number of bands b, and 
• The number of rows r per band

to balance false positives/negatives

• Example: If we had only 15 bands of 5 rows, the 
number of false positives would go down, but the 
number of false negatives would go up

51
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org
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Analysis of LSH – What We Want

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

Si
m

ila
rit

y 
th

re
sh

ol
d 
s

No chance
if t < s

Probability = 1 
if t > s

52J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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What 1 Band of 1 Row Gives You

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket
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b bands, r rows/band

• Columns C1 and C2 have similarity t
• Pick any band (r rows)

• Prob. that all rows in band equal = tr

• Prob. that some row in band unequal = 1 - tr

• Prob. that no band identical  = (1 - tr)b

• Prob. that at least 1 band identical = 1 - (1 - tr)b

54J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Picking r and b: The S-curve
• Picking r and b to get the best S-curve

• 50 hash-functions (r=5, b=10)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Different Options

56

0

0.5

1

0 0.25 0.5 0.75 1

b=10 b=20 b=50

S=75% 
similarity

Different values for b, given 100 elements in the signatures.  (b * r = 100)
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Example: b = 20; r = 5

• Similarity threshold s
• Prob. that at least 1 band is identical:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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1-(1-sr)bs

.006.2

.047.3

.186.4

.470.5

.802.6

.975.7

.9996.8
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Summary

• Step 1 – convert each document into n-grams
• Step 1.1 – convert each unique n-gram into an integer

• Step 2 – Generate a set of universal hash functions
• Step 3 – For each document, compute the short signature vector
• Step 4 – Pick values of R, B to tune to the false-positive and/or false 

negative rates you want
• Step 5 – Hash each of the B bands for each document to find 

candidate pairs
• Step 6 (technically optional, but absurd to skip) – Confirm the 

signatures are similar
• Step 7 (more optional) – Confirm the documents are similar

Why is step 6 recommended, but 7 less so? 6 is easy – the signatures are short! 7 is not. 
The sets are potentially quite large!
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Isn’t this still 
quadratic?

Yes.

If the false positive rate is 5% you’d still 
need to compare 5% n(n-1)/2 candidate 
pairs only to reject them.

BUT: It’s a much faster comparison than 
Jaccard. And 0.05 is a small constant, 
isn’t it? 
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Do it with Spark

1. Generate Signatures : map
2. Split each signature into bands: flatMap
3. Ship each band somewhere: groupByKey with custom partitioner
4. Find collisions within each band: mapPartitions

1. Remove (some) false positives by double checking signatures are similar before 
emitting

5. Merge results: union -> distinct
6. [optional] remove remaining false positives by checking sets are similar 

(expensive): filter

OR: import org.apache.spark.ml.feature.MinHashLSH

It’s also another thing that’s already in the Spark ML package.
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What if I have n-dimensional coordinates and 
am using Euclidian Distance?
Bucketed Random Projection

1. Create a random unit n-vector v “axis 
of projection”

2. For each point p, dot with v to get a 
single value.

The distance along v where p is projected

3. Pick “radius” r. Create buckets with 
width r (i.e. intervals along the axis of 
projection v)

4. Only need to do pairwise comparisons 
for documents in each bucket

The Spark ML Package has this one, too.

This is not on the exam, I just wanted to show you a second LSH real quick-like.
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Bucketed Random Projection – Problem 1

p and q are very close, but in different 
buckets!

Solution(?): put the document into 
neighboring buckets, too.

But wait for problem 2.

If two points are t apart –

Their projected value might be t apart (if the vector pq is parallel to v)
Their projected value might be 0 (if pq is orthogonal to v)

62



Bucketed Random Projection – Problem 2

p and q are far apart, but project to the 
same value (no matter r, they are in the 
same bucket)

But that’s gotta be rare…right?

WRONG.

The curse of dimensionality.
For two random vectors v1 v2, 
E[v1 • v2] -> 0 as d -> infinity

Uh oh…

If the math isn’t obvious from looking, it means our random projection axis v, statistically 
speaking, is going to be nearly orthogonal to just about any vector pq (where p and q are 
arbitrary data points from our collection)

In other words, in 2D the “points colinear” case seems rare,  but for 768 dimensions? It’s 
nearly every case!
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The Curse of 
Dimensionality

Okay… so almost all points will be in bucket 0. 
Uh oh?

Uh oh indeed!

Solution: 
• more than 1 projection (just like 

MinHashing)
• Non-uniform distribution (Gaussian)
• Ignore bucket 0

The “random vectors” assumes they’re uniformly random, so we can play with the 
distributions. With enough vectors we can break the curse. 

Ignoring bucket 0 is important as “most” pairs will be pairs in bucket 0. So being in bucket 0 
is NOT a strong indicator of similarity. Being together in any other bucket is, though.
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Bucketed Random Projection

Pick 3 random vectors v1, v2, v3

For a datapoint p, obtain a 3-vector 
(v1 ⋅ p, v2 ⋅ p, v3 ⋅ p)

Playing with the size of buckets and 
number of random vectors lets you 
tune the false-positive probability 
(probability two random points p q 
will hash into the same bucket
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The Blessing of 
Dimensionality

Remember “Dimensionality Reduction?”

One way to do that to Euclidian / Vector embeddings 
is a random projection matrix (from Dhigh to Dlow)

Computing a true projection matrix is expensive.
But the Curse of Dimensionality means if you pick 
independent random vectors, they’re basically all 
orthogonal! 

If you just pick Dlow random unit vectors for your rows, your matrix is basically a projection 
matrix. Close enough for government work.  (I say that a lot don’t I?)
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More Cursing
Another implication of the Curse of Dimensionality.

Take the unit hypercube and the unit hypersphere.

As d goes to infinity, Volume(Hypersphere) / Volume(Hypercube) -> 0

So? Well, it means we’ll have problems with clustering…

Plus side is hyper dimensional brownies are almost entirely corner pieces!
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What if I have n-dimensional unit vectors and 
am using cosine distance?
Cosine LSH

1. Generate k random 
hyperplanes

2. Signature: length k bit-vector
1. 1 = above plane, 0 = below 

plane

3. Pick radius r – candidate pairs 
differ by no more than r bits

E.g. k = 8, r = 1, h(v) = 10010101
Put into buckets:
10010101
10010100
10010111
…
00010101

I usually skip this in class – definitely not on the exam.
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Clustering

• Given a cloud of data points we want to understand its structure

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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The Problem of Clustering
• Given a set of points, with a notion of distance between 

points, group the points into some number of clusters, 
so that 

• Members of a cluster are close/similar to each other
• Members of different clusters are dissimilar

• Usually:
• Points are in a high-dimensional space
• Similarity is defined using a distance measure

• Euclidean, Cosine, Jaccard, edit distance, …

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Example: Clusters & Outliers

x        x
x  x      x  x
x   x x  x     

x     x  x
x   x

x
xx    x

x  x        
x    x  x   

x
x x   x

x

x   x
x  x    x    x

x    x     x
x  

x

x

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Clustering is a hard problem!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Why is it hard? The Curse of Dimensionality

• Clustering in two dimensions looks easy
• Clustering small amounts of data looks easy
• And in most cases, looks are not deceiving

• Many applications involve not 2, but 10 or 10,000 dimensions
• High-dimensional spaces look different: Almost all pairs of points are 

at about the same distance

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Clustering Problem: Galaxies

• A catalog of 2 billion “sky objects” represents objects by their 
radiation in 7 dimensions (frequency bands)

• Problem: Cluster into similar objects, e.g., galaxies, nearby stars, 
quasars, etc.

• Sloan Digital Sky Survey

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Clustering Problem: Music CDs
• Intuitively: Music divides into categories, and 

customers prefer a few categories
• But what are categories really?

• Represent a CD by a set of customers who bought it:

• Similar CDs have similar sets of customers, and vice-
versa

75J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Clustering Problem: Music CDs
Space of all CDs:

• Think of a space with one dim. for each customer
• Values in a dimension may be 0 or 1 only
• A CD is a point in this space (x1, x2,…, xk), 

where xi = 1 iff the i th customer bought the CD

• For Amazon, the dimension is tens of millions

• Task: Find clusters of similar CDs

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Clustering Problem: Documents

Finding topics:
• Represent a document by a vector  

(x1, x2,…, xk), where xi = 1 iff the i th word 
(in some order) appears in the document

• It actually doesn’t matter if k is infinite; i.e., we don’t limit the set of words

• Documents with similar sets of words 
may be about the same topic

77J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Cosine, Jaccard, and Euclidean
• As with CDs we have a choice when we think of 

documents as sets of words or shingles:
• Sets as vectors: Measure similarity by the cosine 

distance
• Sets as sets: Measure similarity by the Jaccard

distance
• Sets as points: Measure similarity by Euclidean 

distance

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Overview: Methods of Clustering

• Hierarchical:
• Agglomerative (bottom up):

• Initially, each point is a cluster
• Repeatedly combine the two 

“nearest” clusters into one
• Divisive (top down):

• Start with one cluster and recursively split it

• Point assignment:
• Maintain a set of clusters
• Points belong to “nearest” cluster

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org

The top right image is called a “dendrogram” from Latin for branch. Because it’s a tree. This 
is usually how hierarchical clusters are shown. You see this a lot in biology, it’s a 
phylogenetic tree! (Created by clustering genomes using evolutionary edit distance as the 
metric).
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Hierarchical Clustering

• Key operation: 
Repeatedly combine 
two nearest clusters

• Three important questions:
• 1) How do you represent a cluster of more 

than one point?
• 2) How do you determine the “nearness” of clusters?
• 3) When to stop combining clusters?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Hierarchical Clustering
• Key operation: Repeatedly combine two nearest 

clusters
• (1) How to represent a cluster of many points?

• Key problem: As you merge clusters, how do you represent the 
“location” of each cluster, to tell which pair of clusters is 
closest?

• Euclidean case: each cluster has a 
centroid = average of its (data)points

• (2) How to determine “nearness” of clusters?
• Measure cluster distances by distances of centroids

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Example: Hierarchical clustering

(5,3)
o

(1,2)
o

o  (2,1) o  (4,1)
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x (1.5,1.5)

x (4.5,0.5)
x (1,1)

x (4.7,1.3)

Data:
o … data point
x … centroid

DendrogramJ. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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And in the Non-Euclidean Case?
What about the Non-Euclidean case?

• The only “locations” we can talk about are the points 
themselves

• i.e., there is no “average” of two points

• Approach 1:
• (1) How to represent a cluster of many points?

clustroid = (data)point “closest” to other points
• (2) How do you determine the “nearness” of clusters? Treat 

clustroid as if it were centroid, when computing inter-cluster 
distances

83J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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“Closest” Point?
• (1) How to represent a cluster of many points?

clustroid = point “closest” to other points
• Possible meanings of “closest”:

• Smallest maximum distance to other points
• Smallest average distance to other points
• Smallest sum of squares of distances to other points

• For distance metric d clustroid c of cluster C is:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Centroid is the avg. of all (data)points 
in the cluster. This means centroid is 
an “artificial” point.
Clustroid is an existing (data)point 
that is “closest” to all other points in 
the cluster.

X

Cluster on
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Centroid

Clustroid

Datapoint
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Defining “Nearness” of Clusters

• (2) How do you determine the “nearness” of clusters? 
• Approach 2:

Intercluster distance = minimum of the distances between any two points, 
one from each cluster

• Approach 3:
Pick a notion of “cohesion” of clusters, e.g., maximum distance from the 
clustroid

• Merge clusters whose union is most cohesive

85J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Cohesion

• Approach 3.1: Use the diameter of the merged cluster = maximum 
distance between points in the cluster

• Approach 3.2: Use the average distance between points in the cluster
• Approach 3.3: Use a density-based approach

• Take the diameter or avg. distance, e.g., and divide by the number of points in 
the cluster

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Implementation

• Naïve implementation of hierarchical clustering:
• At each step, compute pairwise distances 

between all pairs of clusters, then merge
• O(N3)

• Careful implementation using priority queue can reduce time to O(N2

log N)
• Still too expensive for really big datasets 

that do not fit in memory

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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k-means clustering
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k–means Algorithm(s)

Assumes Euclidean space/distance

Start by picking k, the number of clusters

Initialize clusters by picking one 
point per cluster

89
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 

Datasets, http://www.mmds.org

On picking one point: pick a random point, then for the rest of the clusters, pick something 
that maxiumizes the average distance between it and the existing points… kinda of 
expensive for large k, but usually k is small.
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Populating Clusters
• 1) For each point, place it in the cluster whose current centroid it is nearest

• 2) After all points are assigned, update the locations of centroids of the k
clusters

• 3) Reassign all points to their closest centroid
• Sometimes moves points between clusters

• Repeat 2 and 3 until convergence
• Convergence: Points don’t move between clusters and centroids 

stabilize
• “Fix point”

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, 
http://www.mmds.org 90
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Example: Assigning Clusters

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Example: Assigning Clusters

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Example: Assigning Clusters

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org

93

x

x

x

x

x

x

x x

x  … data point
… centroid

x

x

x

Clusters at the end

93



Getting the k right

How to select k?
• Try different k, looking at the change in the average distance to 

centroid as k increases
• Average falls rapidly until right k, then changes little
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J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Example: Picking k

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Example: Picking k

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Example: Picking k

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Basic MapReduce Implementation

class Mapper  {
def setup() = {

clusters = loadClusters()
}

def map(id: Int, vector: Vector) = {
emit(clusters.findNearest(vector), vector)

}
}

class Reducer {
def reduce(clusterId: Int, values: Iterable[Vector]) = {

for (vector <- values) {
sum += vector
cnt += 1

}
emit(clusterId, sum/cnt)

}
}
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Spark it up

Doing this in Spark is much better!
1. Pick random centroids 
2. create pair RDD by assigning (key is cluster #) – partition by key and 

CACHE
3. reduceByKey + map to get new centroids
4. Create new pair RDD by reassigning using new centroids

1. Accumulator tracks how many data points changed cluster ID
2. Don’t forget to unpersist the old assignment RDD

5. If accumulator > 0, goto step 3

Why is this so fast:
1. Datapoints held in memory
2. Because datapoints before / after reduceByKey are partitioned by cluster ID, partition 

change only occurs for data points that change cluster ID.
1. So? So if their partition doesn’t change, they “shuffle” to the worker node 

they’re currently already on (so don’t touch the disk, don’t touch the network, 
just stay put)
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