
Data-Intensive
Distributed
Computing
CS431/451/631/651

Module 6 – Data Mining /
Machine Learning

Part 2 – LSH, Min-Hashing, and
Clustering

1

Structure of the Course

“Core” framework features
and algorithm design

A
n

al
yz

in
g

T
ex

t

A
n

al
yz

in
g

G
ra

p
hs

A
n

al
yz

in
g

R
el

at
io

n
al

 D
at

a

D
at

a
 M

in
in

g

What the, we skipped relational data?
(Yes, the assignments flow more easily this way…maybe I should change the graphic…)

2

Detour – Embeddings and Distance

Sometimes the feature vector is still too high-dimensional to work with!

Example - text message with 140 characters: 256140 = really big & sparse

Possible Embedding – character 4-grams – 2564 = still really big, still sparse

Some models DO have 2 billion parameters. A spam filter shouldn’t

Here each feature would be 0 or 1, meaning “does not contain this 4-gram” or “does”. You
could also have them be counts instead of strictly 0 or 1. 0 or 1 is easier.

3

Reducing Dimensions

To reduce the dimensionality of a set of
n-grams:
Hash them modulo some large prime
(but much smaller than the original
number of dimensions)

On the assignment: (mod 1,000,009)

1M << 4B : collisions are rare enough to
ignore

4

Some of the following diagrams
are borrowed

Thanks to Jure Leskovec, Anand Rajaraman, Jeff Ullman
(Stanford University)

• If a slide says that at the bottom:
• I’ve borrowed the whole slide, or
• I’ve borrowed the diagrams and put my own

words on them

5

Fun Problem –
Near Neighbours

Problem:
• S – Set of Objects
• D(a,b) – Distance from object a to b
• t – maximum distance threshold
Goal: Find all unordered pairs (a,b) s.t.
D(a,b) ≤ t

6

Scene Completion Problem

7J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

[Hays and Efros, SIGGRAPH 2007]

Scene Completion Problem

8J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors, 20,000 image database

10 nearest neighbors from a collection of 20,000 images

Scene Completion Problem

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

9

[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors, 20,000 image database

10 nearest neighbors from a collection of 2 million images

Scene Completion Problem

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

10

[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors, 2.3 million image database

There are lots of ways to measure image
similarity

Similar Visually Similar Subject

Visual Similarity is tricky – You need a model of human vision + cognition. Or just accept it’s
only going to be OK. Or use a neural network (they’re essentially magic)

Similar Subject – Well…I guess you need the same things. A way to extract “what’s in the
image” and then a regular inverted index to find other images with the same “caption” – I
know of one such thing, BLIP. It’s a neural network again.

11

Template Based
Protein Folding

Given a sequence, find proteins in
database with a similar sequence.
• NOT as easy as hamming distance –

not all mutations are equal.
• Changing Leucine to Isoleucine

(nearly identical)
• Changing Leucine to Lysine

(most properties different)
• Also insertions / deletions

Why – Proteins with similar sequences tend to have similar shapes (folds). Well, they might
be different at the places that differ, but it’s at least a good starting point (if you start from
scratch instead of a template, it’s called “ab initio” which is Latin for “from scratch” “from
the start”)

12

Document Similarity

Near-Duplicate Detection is
important for IR
• Lots of places that mirror

usenet content
• Many news site post the same

articles (newswire, freelance
writers, etc.)

• But not IDENTICAL – editor
edits, website has own
header/footer/”related
article” links

13

Today’s Objective
Given high-dimensional datapoints x1, x2, … xn and some
distance function d(x1, x2):

Find all pairs of datapoints xi, xj s.t. d(xi,xj) < s

The naïve approach: just compute d(xi, xj) for all i,j
O(n2) – not very big data

Magic: O(n) – normal to want, and possible to achieve.

Why do we care? The core technique applies to ML!

The fingerprint is because we’re going to be creating signatures (fingerprints)

14

Hey! “Magic” isn’t an explanation!

Sure, but it caught your attention.

Q: How can you find all identical items in a collection of n?
A: Hash table – insert is O(1) – only need to compare collisions, not

all pairs!

This is O(n) (assuming a low collision rate)

We assume that collisions due to identical hash codes will occur so rarely that we can
ignore them. So collision is only due to the size of the table.
With a sufficiently large table, you can make the number of expected colissions sub-linear
i.e. o(n) -- (the little o is on purpose)

15

Locality Sensitive Hashing (LSH)

For X, X’ such that d(X,X’) = c

Normal Hash Function: If you know X and h(X): No idea what h(X’)
is

LSH Hash Function: If you know X and h(X): E[dhash(h(X), h(X’)] = c

Translation: items that are “close” have hash codes that are
“close” (on average)

Things to note:
1. It’s only the expected value. So it’s OK if sometimes the distance is more than c, and

sometimes less. (IDEALLY we want this to be a normal distribution)
2. The distance metric is dhash not d, because the hash function probably does NOT return

the same type as X)

16

(Scalar) LSH
to find Near
Neighbours

1. Make a Hash Table
2. Use buckets that are w wide (and

overlapped, so items go in multiple
buckets)

3. Most values xi, xj s.t. d(xi, xj) < c will have at
least 1 bucket in common
1. Most values > c will NOT share a common

bucket

This works if you have a scalar hash code, but not if we have a VECTOR code (or “signature
vector” to its friends)
We’ll get to that later.

17

Brilliant, so all we need is a LSH
function?

Yup, we “just” need a LSH function.

We now spend the rest of the lecture
“just” constructing such a creature.

“just” strikes again!

18

What’s Distance, Anyway?
Measuring distance between text documents:

Remember, one goal is detecting duplicate
news stories

• Diff: Too sensitive to rearrangement
• Word Count / Bag of Words: not sensitive

enough to rearrangement
• Edit Distance: too difficult to compute
• doc2vec cosine distance: (too advanced)
• N-Grams: Just right

Too advanced for this course I mean…

19

Jaccard

How do n-grams give us a distance measure? Jaccard distance! This is
used for sets.
Do we have sets?
Yes: A document embedding is the set of n-grams it contains.

𝑠𝑖𝑚 𝐶1, 𝐶2 =
𝐶1 ∩ 𝐶2

𝐶1 ∪ 𝐶2

d C1, C2 = 1 − sim(C1, C2)
3 in intersection
7 in union
Jaccard similarity= 3/7
Jaccard distance = 4/7

What if you can’t make sets? Well, you’ll need a different LSH technique. Sorry, this is only
for sets!

20

Reminder: We want this
for embeddings!
An embedding of binary (0 or 1) features is a set

If we have embeddings with dense floating point
features we’ll just have to do something else!

Fortunately, n-gram embeddings are pretty good

21

What n should I use?

Depends on if you’re doing byte-level or word-level n-grams
Depends on what size of documents

For byte-level:
• 4-5 for short documents (tweets, sms, emails)
• 8-10 for long documents (webpages, books, papers)

For word-level:
• 2-3 for short documents
• 3-5 for long documents

The sentiment analysis paper used byte-level 4-grams, and so does the spam filter
assignment!

22

Jaccard for Multisets

Just adjust the definitions of union and
intersection

Union: If C = A U B then C[k] = max(A[k], B[k])

Intersection: If C = A ∩ B then C[k] = min(A[k],
B[k])

|A| = the sum of the counts for all keys in A.

With that being said, n-gram embeddings are usually regular sets, not multisets. The counts
for each n-gram don’t (usually) make enough of a difference to justify the large increase in
the size of the embedding.

Also the LSH we’re about to see doesn’t work for multi-sets so you’d need to come up with
a different function.

23

Sets and Vectors

Reminder: A Set can be represented as a bit
vector

1. Assign natural numbers 0…n to the
elements of the Universe set

2. Bit vector at index i is 1 if the set contains
element I

3. Benefit: union/intersection are bitwise or
/ bitwise and

I already made the opposite argument when I said our feature vector is a set!
But a little repetition never hurts

24

Reminder: LSH

A Hash function h() such that:
• If C1 and C2 are highly similar, then with high probability:

• h(C1) = h(C2)

• If C1 and C2 are highly dissimilar, then with high probability:
• h(C1) ≠ h(C2)

• Different approach needed for each definition of “similarity”

For Jaccard distance: Min-Hashing!

h() - My Physics 12 teacher did this with all function definitions to avoid h(x) and
confusing people with other X’s we’d already been talking about.
That or he was weird. Maybe both. Either way I’m carrying on the tradition.

25

Min-Hashing – Two Views

Let C be a set of integers (each N-
gram has been numbered)

Imagine you have a random
permutation

h(C;) = miniϵC (i)

Let C be a set of n-grams (n-tuples
of strings)

Imagine you have a random
enumeration function

h(C;) = miniϵC (i)

Enumeration of all n-grams, not just C

Q: What on Earth is an enumeration function?
A1: It’s a bijection that maps some set S onto the range [1, |S|]

(And if it’s been a while, a bijection is a function that’s one-to-one and onto)
A2: It’s a function that enumerates a set of objects

Q: And enumerate means? Asking for a friend…
A: It means “count”.

26

Are we Permutating or Enumerating?

Yes.

Permutating assumes the n-grams have already been
enumerated and represented as a bit-vector

Enumerating assumes they are still a set of string tuples and
we are assigning each n-gram an integer.

It’s much easier to create a random permutation than it is to create a random n-gram
enumerator. Being mathematically equivalent isn’t the same thing as being computationally
equivalent.

27

Collection as a Matrix

• Row = Elements of Set (i.e. n-gram)
• Column = one Set (i.e. document)
• 1 in (i,j) -> n-gram i is in document j

Next Objective: Compute a signature for each
column (document) s.t |sig| ≪ |col|

Ideally, column similarity = signature similarity 0101

0111

1001

1000

1010
1011

0111
Documents

N
-G

ra
m

s
Repetition for Emphasis: row 1 is n-gram #1. It’s NOT the string “1”, but whichever n-gram
string has been assigned (arbitrarily) as the “first” n-gram.

28

Representing a Permutation

4

5

1

6

7

3

2

G

F

E

D

C

B

A

S

The n-gram at index 1 is moved
to index 2

The n-gram at index 4 is moved
to index 6

29

Representing a Permutation

4

5

1

6

7

3

2

G

F

E

D

C

B

A

S

C

D

F

G

B

A

E

In other words the rule is that if you process S and in lockstep, the value you get from
is where the corresponding value from S gets moved to.

You can also define a permutation using the opposite rule, where the value you get from
tells you what index from S to retrieve (So you’re processing and the output in lockstep)

Remember: This kind of thing is important when you have a lot of data! You usually want to
join the inputs together in this way. (Especially here, where we’re not actually going to
generate the complete permutation of the set…you’ll see why in a second, if I haven’t
already blabbed about it)

It depends which is worse: random access of the output, or random access of the input!
In our situation, we don’t need to compute the full (S) , just one element at a time, so this
approach is more efficient! All memory access is sequential.

30

The Min-Hash Property

Claim: Pr[h(C1;) = h(C2;)] = sim(C1,C2)
Proof:

Let y = h(C1 U C2)
It must be the case that y = h(C1;) or y = h(C2;) – Why?

Is it in both though? There are |C1 ∩ C2|things in both.
And |C1 U C2| possible values for y.

So the probability it’s in both =

ଵ
 ∩

ଶ

ଵ
 ∪

ଶ

= sim(C1, C2)

Why? The permutation is random. So, every single element y in the union has the same
chance of being placed first by the permutation. So it’s a uniform random choice!

Think of it this way: The only part of the permutation that matters are the entries in 𝐶1 ∪
 𝐶2

The way to generate a permutation is: pick a random value, that’s entry 1. Then pick
another (without replacement), that’s entry 2.
Since entry 1 is “smallest”, a random permutation means picking the smallest element
uniformly

Or think of it this way: If some elements are more likely to be small than others, how could
you possibly call that unbiased?

31

So, h(C ;) is a LSH?

Yup

Let A, B be docs s.t. S(A,B) = s

h(A;) = h(B;) with an s% chance

1 2
1 2

That’s the property we wanted for an LSH

However, the variance is through the roof, and although the expected value is right, two
hash codes are either distance 0, or distance 1, with nothing in between. That’s not good
enough.

32

Signatures

Generate K independent permutations

Sig(C)[i] = h(C;πi) i.e. the min-hash defined by the ith permutation

The signature is K x 4 bytes (400 if K=100) assuming no more than 232

n-grams

Much smaller than column C!

Why we want more than 1:

1. We’ll see the math in a bit here
2. We wanted a normal distribution. We don’t have one with one min-hash function, but

as the number of trails (number of hash function) goes to +infinity, the distribution will
converge on the normal distribution. (Central Limit Theorem)

33

Similarity of
Signatures

sim(Sig1,Sig2) = percentage of entries that
are equal.

NOTE: Signature is NOT a set, cannot use
Jaccard similarity!

We know: Pr[h(C1) = h(C2)] = sim(C1,C2)

E[sim(Sig1,Sig2)] = sim(C1, C2)

(This is true no matter how many entries the sig has, but the more it has, the lower the
variance)

34

Min-Hashing Example

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

2nd element of the permutation
is the first to map to a 1

4th element of the permutation
is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101

Input matrix (N-Grams x Documents) Permutation

35

Min-Hashing Example

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

Similarities:
1-3 2-4 1-2 3-4

Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101

Input matrix (N-Grams x Documents)

3

4

7

2

6

1

5

Permutation

36

Implementation

sig[C][i] = for all C, I
for each row index j in each column C:
if C[j]:

for each hash function index i:
sig[C][i] = min(sig[C][i], hi(j))

Problem: computing hi is prohibitive!
In fact even writing down hi is prohibitive

37

Why so Prohibitive?

How many n-length permutations are there? n!
(That’s not an excited answer, it’s n factorial)

How many bits needed to distinguish each possible permutation?
Ω(lg(n!)) = Ω(n lg n)

That’s too many bits! If doing byte-level 4-grams,
232 x 32 = 137,438,953,472 = 16GB

Why? If there are n! of them, if you have an encoding that averages less than Ω(n lg n)
bits, there will be fewer possible encodings than there are
permutations to be encoded! That’s a contradiction because
1. The concept of an encoding is that each unique object

gets a unique encoding
2. Pigeonhole principle means that at least 1 encoding

represents multiple objects

Those darn pigeons.

38

Alternative?

Let hi be a k-universal hash function

for each hash function index i:
sig[C][i] = min(sig[C][i], hi(j))

Conceptually: let i be the “permutation” we get if we sort using
hi as the key function – break ties arbitrarily

Question for the class: Is that going to be the same as a permutation chosen uniformly at
random?
(No, it’s not, but it’s close enough for government work)

39

K-Universal Hash Function

Pick K constants – c1 … ck

h(x) = (c1 + c2x + c3x2 + … ckxk-1) mod p p being a large prime

K-Universal means h(x1), h(x2), …. h(xk) will not correlate (but after that
they might)

Is that good enough? Maybe
Pr[hk(y)=min(hk(X))] = (1 / |X|)(1 ± e-k)
Only need a 4-universal function for the probability to be within 2% of the
Jaccard distance

40

Hold on, let’s check the map…

Goal: Find all pairs of documents (A,B) s.t. Sim(A,B) >= s for some
score s (e.g. 80%)

General Idea: LSH – A hash function where similar documents have
similar hash codes

Our LSH – MinHash – If two documents have Jaccard similarity s,
then E[f(A,B)] = s

41

OK, so…

Documents A,B are a “candidate pair” if MinHash(A,B) >=
s.

Dan, my friend, does that not still require all pairwise
comparisons?

LSH requires a hash table, too. Not just the codes!

42

MinHash
Table

A MinHash signature is an n-vector, not a
scalar hash code.

How do you assign based on that?

1. An n-dimensional table (Or, equivalently, a
1-dimensional table where you use a
secondary hash function on the sig vector)

2. n independent 1-dimensional tables
3. A secret third thing?

Problems
1 – Two documents with 80% similarity aren’t THAT likely to have identical signatures so
we’ll miss a lot of them.
2 – Two documents with 10% similarity are likely to have at least 1 value in common in
their signature vectors

(We COULD count how many times A,B collide but then we’re back to
pairwise comparisons, not practical at scale)

43

The Secret Third Thing
(Middle Ground)

Slice the signature vector into b equal
sized “bands” of r values each

Have b 1-dimensional tables, and
consider (A,B) a candidate pair if they
collide in any of the tables

44

Partition M into b Bands

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org 45

Signature matrix M

r rows
per band

b bands

One
signature

1212

1412

2121

45

Big
Assumption

Our hash tables will have a
lot of buckets

(Or we’ll use secondary
hashing – Either way, we’re
going to ignore collisions)

This assumption simplifies
the math (but doesn’t
change the correctness)

46

Matrix M

r rows b bands

Buckets
Columns 2 and 6
are probably identical
(candidate pair)

Columns 6 and 7 are
surely different.

Hashing Bands

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

47

47

Example of Bands

Assume the following case:
• Suppose 100,000 columns of M (100k docs)
• Signatures of 100 integers (rows)
• Therefore, signatures take 40Mb
• Choose b = 20 bands of r = 5 integers/band

• Goal: Find pairs of documents that
are at least s = 0.8 similar

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

48

1212

1412

2121

48

C1, C2 are 80% Similar
• Find pairs of s=0.8 similarity, set b=20, r=5
• Assume: sim(C1, C2) = 0.8

• Since sim(C1, C2) s, we want C1, C2 to be a candidate pair: We
want them to hash to at least 1 common bucket (at least one
band is identical)

• Probability C1, C2 identical in one particular
band: (0.8)5 = 0.328

• Probability C1, C2 are not similar in all of the 20 bands:
(1-0.328)20 = 0.00035

• i.e., about 1/3000th of the 80%-similar column pairs
are false negatives (we miss them)

• We would find 99.965% pairs of truly similar documents

49
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org

1212

1412

2121

49

C1, C2 are 30% Similar
• Find pairs of s=0.8 similarity, set b=20, r=5
• Assume: sim(C1, C2) = 0.3

• Since sim(C1, C2) < s we want C1, C2 to hash to NO
common buckets (all bands should be different)

• Probability C1, C2 identical in one particular band:
(0.3)5 = 0.00243

• Probability C1, C2 identical in at least 1 of 20 bands: 1 -
(1 - 0.00243)20 = 0.0474

• In other words, approximately 4.74% pairs of docs with
similarity 0.3 end up becoming candidate pairs

• They are false positives since we will have to examine them (they
are candidate pairs) but then it will turn out their similarity is
below threshold s

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

50

1212

1412

2121

50

LSH Involves a Tradeoff
• Pick:

• The number of Min-Hashes (rows of M)
• The number of bands b, and
• The number of rows r per band

to balance false positives/negatives

• Example: If we had only 15 bands of 5 rows, the
number of false positives would go down, but the
number of false negatives would go up

51
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org

1212

1412

2121

51

Analysis of LSH – What We Want

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

Si
m

ila
rit

y
th

re
sh

ol
d
s

No chance
if t < s

Probability = 1
if t > s

52J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

52

What 1 Band of 1 Row Gives You

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

53

Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

53

b bands, r rows/band

• Columns C1 and C2 have similarity t
• Pick any band (r rows)

• Prob. that all rows in band equal = tr

• Prob. that some row in band unequal = 1 - tr

• Prob. that no band identical = (1 - tr)b

• Prob. that at least 1 band identical = 1 - (1 - tr)b

54J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

54

Picking r and b: The S-curve
• Picking r and b to get the best S-curve

• 50 hash-functions (r=5, b=10)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Blue area: False Negative rate
Green area: False Positive rate

Similarity

Pr
ob

. s
ha

rin
g

a
bu

ck
et

55

Different Options

56

0

0.5

1

0 0.25 0.5 0.75 1

b=10 b=20 b=50

S=75%
similarity

Different values for b, given 100 elements in the signatures. (b * r = 100)

56

Example: b = 20; r = 5

• Similarity threshold s
• Prob. that at least 1 band is identical:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

57

1-(1-sr)bs

.006.2

.047.3

.186.4

.470.5

.802.6

.975.7

.9996.8

57

Summary

• Step 1 – convert each document into n-grams
• Step 1.1 – convert each unique n-gram into an integer

• Step 2 – Generate a set of universal hash functions
• Step 3 – For each document, compute the short signature vector
• Step 4 – Pick values of R, B to tune to the false-positive and/or false

negative rates you want
• Step 5 – Hash each of the B bands for each document to find

candidate pairs
• Step 6 (technically optional, but absurd to skip) – Confirm the

signatures are similar
• Step 7 (more optional) – Confirm the documents are similar

Why is step 6 recommended, but 7 less so? 6 is easy – the signatures are short! 7 is not.
The sets are potentially quite large!

58

Isn’t this still
quadratic?

Yes.

If the false positive rate is 5% you’d still
need to compare 5% n(n-1)/2 candidate
pairs only to reject them.

BUT: It’s a much faster comparison than
Jaccard. And 0.05 is a small constant,
isn’t it?

59

Do it with Spark

1. Generate Signatures : map
2. Split each signature into bands: flatMap
3. Ship each band somewhere: groupByKey with custom partitioner
4. Find collisions within each band: mapPartitions

1. Remove (some) false positives by double checking signatures are similar before
emitting

5. Merge results: union -> distinct
6. [optional] remove remaining false positives by checking sets are similar

(expensive): filter

OR: import org.apache.spark.ml.feature.MinHashLSH

It’s also another thing that’s already in the Spark ML package.

60

What if I have n-dimensional coordinates and
am using Euclidian Distance?
Bucketed Random Projection

1. Create a random unit n-vector v “axis
of projection”

2. For each point p, dot with v to get a
single value.

The distance along v where p is projected

3. Pick “radius” r. Create buckets with
width r (i.e. intervals along the axis of
projection v)

4. Only need to do pairwise comparisons
for documents in each bucket

The Spark ML Package has this one, too.

This is not on the exam, I just wanted to show you a second LSH real quick-like.

61

Bucketed Random Projection – Problem 1

p and q are very close, but in different
buckets!

Solution(?): put the document into
neighboring buckets, too.

But wait for problem 2.

If two points are t apart –

Their projected value might be t apart (if the vector pq is parallel to v)
Their projected value might be 0 (if pq is orthogonal to v)

62

Bucketed Random Projection – Problem 2

p and q are far apart, but project to the
same value (no matter r, they are in the
same bucket)

But that’s gotta be rare…right?

WRONG.

The curse of dimensionality.
For two random vectors v1 v2,
E[v1 • v2] -> 0 as d -> infinity

Uh oh…

If the math isn’t obvious from looking, it means our random projection axis v, statistically
speaking, is going to be nearly orthogonal to just about any vector pq (where p and q are
arbitrary data points from our collection)

In other words, in 2D the “points colinear” case seems rare, but for 768 dimensions? It’s
nearly every case!

63

The Curse of
Dimensionality

Okay… so almost all points will be in bucket 0.
Uh oh?

Uh oh indeed!

Solution:
• more than 1 projection (just like

MinHashing)
• Non-uniform distribution (Gaussian)
• Ignore bucket 0

The “random vectors” assumes they’re uniformly random, so we can play with the
distributions. With enough vectors we can break the curse.

Ignoring bucket 0 is important as “most” pairs will be pairs in bucket 0. So being in bucket 0
is NOT a strong indicator of similarity. Being together in any other bucket is, though.

64

Bucketed Random Projection

Pick 3 random vectors v1, v2, v3

For a datapoint p, obtain a 3-vector
(v1 ⋅ p, v2 ⋅ p, v3 ⋅ p)

Playing with the size of buckets and
number of random vectors lets you
tune the false-positive probability
(probability two random points p q
will hash into the same bucket

65

The Blessing of
Dimensionality

Remember “Dimensionality Reduction?”

One way to do that to Euclidian / Vector embeddings
is a random projection matrix (from Dhigh to Dlow)

Computing a true projection matrix is expensive.
But the Curse of Dimensionality means if you pick
independent random vectors, they’re basically all
orthogonal!

If you just pick Dlow random unit vectors for your rows, your matrix is basically a projection
matrix. Close enough for government work. (I say that a lot don’t I?)

66

More Cursing
Another implication of the Curse of Dimensionality.

Take the unit hypercube and the unit hypersphere.

As d goes to infinity, Volume(Hypersphere) / Volume(Hypercube) -> 0

So? Well, it means we’ll have problems with clustering…

Plus side is hyper dimensional brownies are almost entirely corner pieces!

67

What if I have n-dimensional unit vectors and
am using cosine distance?
Cosine LSH

1. Generate k random
hyperplanes

2. Signature: length k bit-vector
1. 1 = above plane, 0 = below

plane

3. Pick radius r – candidate pairs
differ by no more than r bits

E.g. k = 8, r = 1, h(v) = 10010101
Put into buckets:
10010101
10010100
10010111
…
00010101

I usually skip this in class – definitely not on the exam.

68

Clustering

• Given a cloud of data points we want to understand its structure

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

69

69

70

The Problem of Clustering
• Given a set of points, with a notion of distance between

points, group the points into some number of clusters,
so that

• Members of a cluster are close/similar to each other
• Members of different clusters are dissimilar

• Usually:
• Points are in a high-dimensional space
• Similarity is defined using a distance measure

• Euclidean, Cosine, Jaccard, edit distance, …

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

70

71

Example: Clusters & Outliers

x x
x x x x
x x x x

x x x
x x

x
xx x

x x
x x x

x
x x x

x

x x
x x x x

x x x
x

x

x

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

x x
x x x x
x x x x

x x x
x x

x
xx x

x x
x x x

x
x x x

x

x x
x x x x

x x x
x

Outlier Cluster

71

Clustering is a hard problem!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

72

72

73

Why is it hard? The Curse of Dimensionality

• Clustering in two dimensions looks easy
• Clustering small amounts of data looks easy
• And in most cases, looks are not deceiving

• Many applications involve not 2, but 10 or 10,000 dimensions
• High-dimensional spaces look different: Almost all pairs of points are

at about the same distance

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

73

Clustering Problem: Galaxies

• A catalog of 2 billion “sky objects” represents objects by their
radiation in 7 dimensions (frequency bands)

• Problem: Cluster into similar objects, e.g., galaxies, nearby stars,
quasars, etc.

• Sloan Digital Sky Survey

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

74

74

Clustering Problem: Music CDs
• Intuitively: Music divides into categories, and

customers prefer a few categories
• But what are categories really?

• Represent a CD by a set of customers who bought it:

• Similar CDs have similar sets of customers, and vice-
versa

75J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

75

Clustering Problem: Music CDs
Space of all CDs:

• Think of a space with one dim. for each customer
• Values in a dimension may be 0 or 1 only
• A CD is a point in this space (x1, x2,…, xk),

where xi = 1 iff the i th customer bought the CD

• For Amazon, the dimension is tens of millions

• Task: Find clusters of similar CDs

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

76

76

Clustering Problem: Documents

Finding topics:
• Represent a document by a vector

(x1, x2,…, xk), where xi = 1 iff the i th word
(in some order) appears in the document

• It actually doesn’t matter if k is infinite; i.e., we don’t limit the set of words

• Documents with similar sets of words
may be about the same topic

77J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

77

Cosine, Jaccard, and Euclidean
• As with CDs we have a choice when we think of

documents as sets of words or shingles:
• Sets as vectors: Measure similarity by the cosine

distance
• Sets as sets: Measure similarity by the Jaccard

distance
• Sets as points: Measure similarity by Euclidean

distance

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

78

78

79

Overview: Methods of Clustering

• Hierarchical:
• Agglomerative (bottom up):

• Initially, each point is a cluster
• Repeatedly combine the two

“nearest” clusters into one
• Divisive (top down):

• Start with one cluster and recursively split it

• Point assignment:
• Maintain a set of clusters
• Points belong to “nearest” cluster

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

The top right image is called a “dendrogram” from Latin for branch. Because it’s a tree. This
is usually how hierarchical clusters are shown. You see this a lot in biology, it’s a
phylogenetic tree! (Created by clustering genomes using evolutionary edit distance as the
metric).

79

Hierarchical Clustering

• Key operation:
Repeatedly combine
two nearest clusters

• Three important questions:
• 1) How do you represent a cluster of more

than one point?
• 2) How do you determine the “nearness” of clusters?
• 3) When to stop combining clusters?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

80

80

Hierarchical Clustering
• Key operation: Repeatedly combine two nearest

clusters
• (1) How to represent a cluster of many points?

• Key problem: As you merge clusters, how do you represent the
“location” of each cluster, to tell which pair of clusters is
closest?

• Euclidean case: each cluster has a
centroid = average of its (data)points

• (2) How to determine “nearness” of clusters?
• Measure cluster distances by distances of centroids

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

81

81

82

Example: Hierarchical clustering

(5,3)
o

(1,2)
o

o (2,1) o (4,1)

o (0,0) o (5,0)

x (1.5,1.5)

x (4.5,0.5)
x (1,1)

x (4.7,1.3)

Data:
o … data point
x … centroid

DendrogramJ. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

82

And in the Non-Euclidean Case?
What about the Non-Euclidean case?

• The only “locations” we can talk about are the points
themselves

• i.e., there is no “average” of two points

• Approach 1:
• (1) How to represent a cluster of many points?

clustroid = (data)point “closest” to other points
• (2) How do you determine the “nearness” of clusters? Treat

clustroid as if it were centroid, when computing inter-cluster
distances

83J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

83

“Closest” Point?
• (1) How to represent a cluster of many points?

clustroid = point “closest” to other points
• Possible meanings of “closest”:

• Smallest maximum distance to other points
• Smallest average distance to other points
• Smallest sum of squares of distances to other points

• For distance metric d clustroid c of cluster C is:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

84

Cx

c
cxd 2),(min

Centroid is the avg. of all (data)points
in the cluster. This means centroid is
an “artificial” point.
Clustroid is an existing (data)point
that is “closest” to all other points in
the cluster.

X

Cluster on
3 datapoints

Centroid

Clustroid

Datapoint

84

Defining “Nearness” of Clusters

• (2) How do you determine the “nearness” of clusters?
• Approach 2:

Intercluster distance = minimum of the distances between any two points,
one from each cluster

• Approach 3:
Pick a notion of “cohesion” of clusters, e.g., maximum distance from the
clustroid

• Merge clusters whose union is most cohesive

85J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

85

Cohesion

• Approach 3.1: Use the diameter of the merged cluster = maximum
distance between points in the cluster

• Approach 3.2: Use the average distance between points in the cluster
• Approach 3.3: Use a density-based approach

• Take the diameter or avg. distance, e.g., and divide by the number of points in
the cluster

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

86

86

Implementation

• Naïve implementation of hierarchical clustering:
• At each step, compute pairwise distances

between all pairs of clusters, then merge
• O(N3)

• Careful implementation using priority queue can reduce time to O(N2

log N)
• Still too expensive for really big datasets

that do not fit in memory

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

87

87

k-means clustering

88

k–means Algorithm(s)

Assumes Euclidean space/distance

Start by picking k, the number of clusters

Initialize clusters by picking one
point per cluster

89
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive

Datasets, http://www.mmds.org

On picking one point: pick a random point, then for the rest of the clusters, pick something
that maxiumizes the average distance between it and the existing points… kinda of
expensive for large k, but usually k is small.

89

Populating Clusters
• 1) For each point, place it in the cluster whose current centroid it is nearest

• 2) After all points are assigned, update the locations of centroids of the k
clusters

• 3) Reassign all points to their closest centroid
• Sometimes moves points between clusters

• Repeat 2 and 3 until convergence
• Convergence: Points don’t move between clusters and centroids

stabilize
• “Fix point”

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets,
http://www.mmds.org 90

90

Example: Assigning Clusters

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

91

x

x

x

x

x

x

x x

x … data point
… centroid

x

x

x

Clusters after round 1

91

Example: Assigning Clusters

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

92

x

x

x

x

x

x

x x

x … data point
… centroid

x

x

x

Clusters after round 2

92

Example: Assigning Clusters

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

93

x

x

x

x

x

x

x x

x … data point
… centroid

x

x

x

Clusters at the end

93

Getting the k right

How to select k?
• Try different k, looking at the change in the average distance to

centroid as k increases
• Average falls rapidly until right k, then changes little

94

k

Average
distance to

centroid

Best value
of k

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

94

Example: Picking k

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

95

x x
x x x x
x x x x

x x x
x x

x
xx x

x x
x x x

x
x x x

x

x x
x x x x

x x x
x

x

x

Too few;
many long
distances
to centroid.

95

Example: Picking k

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

96

x x
x x x x
x x x x

x x x
x x

x
xx x

x x
x x x

x
x x x

x

x x
x x x x

x x x
x

x

x

Just right;
distances
rather short.

96

Example: Picking k

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

97

x x
x x x x
x x x x

x x x
x x

x
xx x

x x
x x x

x
x x x

x

x x
x x x x

x x x
x

x

x

Too many;
little improvement
in average
distance.

97

Basic MapReduce Implementation

class Mapper {
def setup() = {

clusters = loadClusters()
}

def map(id: Int, vector: Vector) = {
emit(clusters.findNearest(vector), vector)

}
}

class Reducer {
def reduce(clusterId: Int, values: Iterable[Vector]) = {

for (vector <- values) {
sum += vector
cnt += 1

}
emit(clusterId, sum/cnt)

}
}

98

Spark it up

Doing this in Spark is much better!
1. Pick random centroids
2. create pair RDD by assigning (key is cluster #) – partition by key and

CACHE
3. reduceByKey + map to get new centroids
4. Create new pair RDD by reassigning using new centroids

1. Accumulator tracks how many data points changed cluster ID
2. Don’t forget to unpersist the old assignment RDD

5. If accumulator > 0, goto step 3

Why is this so fast:
1. Datapoints held in memory
2. Because datapoints before / after reduceByKey are partitioned by cluster ID, partition

change only occurs for data points that change cluster ID.
1. So? So if their partition doesn’t change, they “shuffle” to the worker node

they’re currently already on (so don’t touch the disk, don’t touch the network,
just stay put)

99

