
Data-Intensive
Distributed
Computing
CS431/451/631/651

Module 8 – Beyond Batch
Processing

Visual : Streaming

1

Structure of the Course

“Core” framework features and
algorithm design for batch processing

An
al

yz
in

g
Te

xt

An
al

yz
in

g
G

ra
ph

s

An
al

yz
in

g
Re

la
tio

na
l D

at
a

D
at

a
M

in
in

g
an

d
M

ac
hi

ne
 L

ea
rn

in
g

Beyond Batch Processing

When you’re out of green bars, simply make more.

2

Batch Processing
vs

Stream Processing

Batch Processing
• All The Data
• Not Real Time
• Long Wait

Stream Processing
• Process data as it arrives
• Real Time (ish)
• Low Latency

3

Remember Business Intelligence?

The analysists in my diagram said “meh” to stale data, but what about
THIS

Should be real-time!

4

Use Cases Across Industries

Credit Transportation Retail Consumer
Internet &
Mobile

Healthcare Manufacturing Surveillance Digital
Advertising
& Marketing

5

Credit cards – Identify fraud / identity theft
Transportation – Rerouting vehicles – weather delays, road closures, detours, airport
delays, runway closures…
Retail – Inventory management. In-store recommendations / offers (PC app for example?)
e-commerce recommendations
Internet / Mobile – user engagement based on current behaviour
Healthcare – patient stats, identify at-risk patients, real-time emerg waiting times (GRH’s
has been offline for MONTHS )
Manufacturing – equipment maintenance, identify failures and react instantly and
automatically
Surveillance – realtime threat assessment, intrusion detection,
Advertising – optimize targeting advertising based on real-time data

5

Typical Datastream Pipeline

Stream
processing

engine
Kafka

Data Ingest
App 1

App 2

.

.

.

Kafka Flume

HDFS
HBase

Data
Sources

6

Huh? What are all those things?

Kafka – A distributed pub-sub broker designed for resilience and availability
Flume – A distributed log aggregator (designed for resilience and availability)
Stream-Processing-Engine – The top of this module
Hbase – Distributed key-value datastore, modelled after Google’s BigTable and built on top
of HDFS

6

So pixelated

Moses parting the data sea

7

So a data
stream
flows into a
data lake?

…Yes

Does this mean there is also data
rain? When data in the cloud
condenses and…

Not yet, but, be the change you
want to see in the world

8

But what IS a data stream?

A sequence of items (tuples)

• Structured
• Ordered (either a timestamp, or implicitly by arrival time)
• Continuously arriving
• High volume

• Might not be possible to store all of it
• Might not be possible to even examine all of it

9

How do you
process it?

Filter (select), Map, Flat Map
(project / transform)

Group , Aggregate, Join

Problem?

The problem is that the “reduce-like” tasks – grouping, aggregating, and joining – rely on
having all of the data.
How can we define them “continuously?”

10

Problems in Semantics

Aggregation /
Grouping

• When do you start?
When do you stop?

Joining Stream to
Static Data

• Easy Lookup, not a
problem.

Joining Stream to
Stream

• How long do you
wait for the
corresponding key?

• When do you stop
joining?

11

Windows

Solution: Define all “reduce-like”
transformations for a given window

• Based on ordering attribute (timestamp)
• Based on counts (last X records)
• Based on explicit markers

• a.k.a. Punctuation

12

Sliding vs Tumbling

• Sliding
• Last minute of data, updated every 5 seconds
• Each window has most data in common with previous
• Can your operation be reversed?

• Can you easily remove values and add others without a full recompute?

• Tumbling
• Last minute of data, updated every minute
• Blank slate, no data in common between windows
• You might be able to make a sliding window out of smaller tumbling windows!

13

Windows on Ordering Attributes

Assumes the existence of an attribute that
defines the order of stream elements (e.g., time)

Let T be the window size in units of the ordering attribute

t1 t2 t3 t4 t1' t2’ t3’ t4’

t1 t2
t3

sliding window

tumbling window

ti’ – ti = T

ti+1 – ti = T

14

14

Windows Based on Counts

Windows of N records (sliding or tumbling) over the stream

Bursts:
• When stream is slow, windows are LONG
• When stream is fast, windows are very short

t1 t2 t3t1' t2’ t3’ t4’

15

Windows Based on “Punctuation”

Sending Application inserts “End of Batch”
• UI Analytics, sends “End of Session” when user closes tab

PRO: application controls the semantics
CON: unpredictable window size (both time and number of
records)

What does “application controls the semantics” mean?
In the context of analytics, a window of a single user session is PERFECT. Impossible to
achieve through other methods. You can use time-based windows drawn from your
“median session duration” statistics but that’s far from ideal.

Of course, not every sort of stream lends itself to inserting this kind of punctuation.

16

Stream Challenges

Inherent Challenges
• Latency Requirements
• Memory / Storage

• Big Data are Big

Framework Challenges
• Bursty nature of streams
• Load Balancing / Clustering
• Out-of-Order delivery
• Consistency Choices

• At most once
• Exactly once
• At least once

Consistency choices

At most once: Every consumer will get a value from a producer at most once (but might
not get it at all) -- easiest
Exactly once: Every consumer will get every value from a producer, and will never get any
duplicates -- hardest
At least once: Every consumer will get every value from a producer, but may receive
duplicates. Might be harmless if consumer can ignore duplicates. (Easy)

17

Two Hard Problems with
Distributed Delivery

2. Exactly-Once Delivery
1. Out-of-Order Delivery
2. Exactly-Once Delivery

18

Producer/Consumers

Producer Consumer

How do consumers get data from producers?
19

Producer – Consumer model
Produces generate / gather / aggregate data
Consumers process it.

(A consumer might also be a producer, e.g. it’s processing raw data and producing
aggregated date for use in a dashboard, etc.)

19

Producer/Consumers

Producer Consumer

20

Push / Callback method

Producer sends to consumer

20

Producer/Consumers

Producer Consumer

21

Pull / Poll method

Consumer requests data from producer

See also `tail –f` to do a polling stream from a UNIX file

21

Producer/Consumers

Producer

Consumer

22

Producer

Consumer

Consumer

A consumer might be consuming data from multiple producers, and a producer might need
to send to multiple consumers

Many:Many relationship in other words

How can you scale this to hundreds of consumers and dozens or producers?
How can you scale this even higher???

22

Middleware

Producer

Consumer

23

Producer

Consumer

Consumer

Data
Broker

Pub/Sub Queue

Producers push to the broker, broker pushes to consumers…

23

Middleware

Producer

Consumer

24

Producer

Consumer

Consumer

Data
Broker

Pub/Poll

You could also have a push pull model: produces push to broker, consumers pull from the
broker as needed

Advantage to consumer polling: Broker doesn’t need to worry about spotty connections by
consumers. When your phone has internet again, it will ask for updates.
Disadvantage – frequent polling for infrequently arriving data is wasteful

MQTT uses push-to-consumer
Kafka uses pull-from-broker

24

Pub/Sub at Dan’s House

Image: from mqtt.org

I’ve got a bunch of ESP8266 / ESP32 IoT thingies in: garage, attic, crawlspace, living room,
deck that log temperature, humidity, air pressure (just the outdoor one)
They all push to an MQTT broker. The living room unit has an LCD display, so it subs to the
deck sensor to display Inside and Outside temps.

The security system also pushes things like ‘garage door open’, ‘living room motion sensor’
to the MQTT broker.

HomeAssistant subscribes to these subjects, and can show house temperatures, security
alerts.
The weather subjects also have a subscriber that tosses them into a postgres database. (A
quick little C program I wrote that SEEMS to work)

MQTT is a very lightweight protocol meant for IoT applications. It’s not as resilient as
needed for Big Data…

Anyways…

25

Stream Processing Frameworks
• Apache Spark Streaming
• Apache Storm
• Apache Flink

26

27

27

Spark Streaming: Discrete Streams (DStream)

• Tumbling Window with very small duration (typically 1 second)
• As mentioned, you can make a sliding window out of a bunch of tumbling

windows

• Every t seconds (usually t=1) collect all data into an RDD
• Process RDD through Spark Engine like any other RDD

Image source: spark.apache.org

28

Getting Started: Spark Streaming Context

Usually a variable called ssc.
• Specify the time slice when creating. Default is 1 second

ssc can be used to create DStreams

A DStream has the RDD transforms
It also has its own transforms and actions

The RDD transforms create a new Dstream. Each RDD “packet” in the source is
transformed using the RDD transform. These form a new DStream

The DStream specific transforms tend to transform the entire stream.

29

Example: Tweet Streams

tweets = ssc.receiverStream(TweetReceiver(username,password))
hashtags = tweets.flatMap(getTags)
hashtags.saveAsHadoopFiles(…)

One of many stream constructors Custom Receiver Class

flatMap applied to each batch RDD

New stream has 1:1 RDD matching

RDDs saved to HDFS as they’re
created

30

Key Concepts

DStream – sequence of RDDs representing a stream of data
Twitter, HDFS, Kafka, Flume, TCP sockets

Transformations – modify data from on DStream to another
Standard RDD operations – map, countByValue, reduce, join, …

Stateful operations – window, countByValueAndWindow, …

Output Operations – send data to external entity
saveAsHadoopFiles – saves to HDFS

foreach – do anything with each batch of results

31

You can also output back to Kafka, etc.

31

Example: Tweet Streams

tweets = ssc.receiverStream(TweetReceiver(username,password))
hashtags = tweets.flatMap(getTags)
tagCounts = hashTags.countByValue() Produces pair RDD: (value, count)

hashtags

tweets

tagCounts

[(#cat, 10), (#dog, 25), ...]

Repeat for each batch

Problem?

The problem is that this is only the hashtags for the last SECOND. That’s a very small
window.

32

Example: Tweet Streams
tweets = ssc.receiverStream(TweetReceiver(username,password))
hashtags = tweets.flatMap(getTags)
counts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

x 600 (Seconds in 10 min)hashTags

counts

The first count RDD depends on the first 600 hashtag RDDS (call them 1 through 600). The
second count depends on hashtag RDDs 2 through 601

33

Stream Smarter, not Harder
tweets = ssc.receiverStream(TweetReceiver(username,password))
hashtags = tweets.flatMap(getTags)
tagCounts = hashTags.countByValueAndWindow(Minutes(10), …)

x 600 (Seconds in 10 min)hashTags

counts

Takes previous window
RDD, subtracts hashTags
RDD 1 and adds RDD 601

Much more efficient!

34

Smart window-based reduce

Incremental counting generalizes to many reduce operations
Need a function to “inverse reduce” (“subtract” for counting)

val tagCounts = hashtags

.countByValueAndWindow(Minutes(10), Seconds(1))

val tagCounts = hashtags

.reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(1))

35

tagCounts = hashtags

.reduceByKeyAndWindow(lambda x,y:x+y, lambda x,y:x-y,
Minutes(10), Seconds(1))

Last two: Scala vs Python

35

Can process 6 GB/sec (60M records/sec) of data on 100 nodes at sub-second latencyTested

 with 100 streams of data on 100 EC2 instances with 4 cores each

Performance

36

Higher throughput than Storm

 Spark Streaming: 670k
records/second/node

 Storm: 115k
records/second/node

Comparison with Storm

37

Data Brokers
• Two popular ones are Kafka and Flume
• Flume is specifically for log aggregation, not general purpose
• Kafka is general purpose
• MQTT is lightweight for IoT uses. Not suitable for big data

streaming
• MQTT broker can collect data from IoT and forward to a

Kafka broker

38

39

Kafka?

• http://kafka.apache.org/

• Originated at LinkedIn, open sourced in early 2011

• Implemented in Scala, some Java

Jay Kreps chose to name the software after the author Franz Kafka because it is "a
system optimized for writing", and he liked Kafka's work.

40

41

Kafka adoption and use cases
• LinkedIn: activity streams, operational metrics, data bus

• 400 nodes, 18k topics, 220B msg/day (peak 3.2M msg/s), May 2014

• Netflix: real-time monitoring and event processing

• Twitter: as part of their Storm real-time data pipelines

• Spotify: log delivery (from 4h down to 10s), Hadoop

• Loggly: log collection and processing

• Mozilla: telemetry data

• Airbnb, Cisco, Uber, …

https://cwiki.apache.org/confluence/display/KAFKA/Powered+By

42

How fast is Kafka?

• “Up to 2 million writes/sec on 3 cheap machines”
• Using 3 producers on 3 different machines, 3x async replication

• Only 1 producer/machine because NIC already saturated

43

Why is Kafka so fast?

• Fast writes:
• While Kafka persists all data to disk, essentially all writes go to the

page cache of OS, i.e. RAM.

• Fast reads:
• Very efficient to transfer data from page cache to a network socket
• Linux: sendfile() system call

Example (Operations): On a Kafka cluster where the consumers are mostly
caught up you will see no read activity on the disks as they will be serving data
entirely from cache. http://kafka.apache.org/documentation.html#persistence

44

STREAMING KAFKA,

45

Producer

Consumer

46

Producer

Consumer

Consumer

Kafka
Cluster

Producers write data
to Kafka Broker

Kafka stores data by
topic

Kafka topics are split
into partitions, and

replicated across the
cluster

Consumers send
requests to read

topics (Pull model)

46

Zooming In

Broker 1

Broker 2

Broker 3

Producer Consumer

Kafka Cluster

Leader Replica

Follower Replica

This diagram is for a specific topic, e.g. “/sensors/temperature”

The producer will send messages (events in Kafka terminology) to the cluster, and they will
be divided among the partitions.
For redundancy, each partition is replicated on other nodes in the cluster.

In this diagram, Broker 1 is the leader for partition Orange, and Broker 2 is a follower for
Orange. Messages that Producer writes to Orangeare sent to Broker 1, which will forward
them to Broker 2 to replicate

If Broker 1 goes offline, Broker 2 becomes the leader until Broker 1 is back online.

This diagram shows 3 brokers with 2x replication (R=2). A Kafka cluster can tolerate R-1
failures without data loss (in this case, any one Broker can go down without loss).

47

Writing to a partition
OldNew

Producer

Messages from the producer are hashed (if the messages have a key) or balanced round-
robin and appended to the partitions

(Think appending to files. Some docs refer to the partitions as “log files”)

48

Write Exactly Once

Option: Idempotence Cool word.

Producer sends a unique key with each
batch of messages.

Brokers log these and reject duplicate
messages

An idempotent operation is one that if applied multiple times, has the same effect as if it
was only applied once.

Since producers should be sending batches of messages anyway, the overhead of one extra
UUID is per batch is quite low. (Apache claims it’s negligible)

49

To Key or Not to Key
• Partitions are totally ordered, but topics are not

• If your events have a key then all events with the same key are in the
same partition, and therefore are in order by arrival time

• If your events have no key, they are not in exact order anymore

• Takeaway: If you need totally ordered arrival, use a key!
• Warning: If the key isn’t good, the partitions won’t be even 

50

Reading a Partition

A partition can be
read by multiple
consumers

Each consumer
remembers its
offset in each
partition

01234

OldNew

56789

Consumers are responsible for their own bookkeeping. Kafka doesn’t remember where the
blue gearhead was at. If it asks for message 7 in partition Orange, that’s what it gets! If a
consumer crashes, it can ask for messages it’s already “seen”. Also allows it to recompute
values if, e.g., a lookup table was wrong, there was a bug in the code. All kinds of reasons
to rewind time.

51

Consumer Groups

Consumers can be
grouped.

A consumer group
gets all messages for
a given topic, but
each consumer only
gets one partition’s
worth

DStream RDDs will have 3
partitions!

Sound familiar? Sounds like if you have a topic with 6 partitions, then your Spark Stream
would have 6 partitions per RDD? Yes!

The DStream would form a consumer group for that topic, and assign 1 RDD Partition (Task)
per Kafka Partition

52

Read Exactly
Once

Consumer is given a batch of
messages, including the index
range

• Consumer should remember the
range so it knows how to ask for
the next ones

• Consumer should remember the
range so it can discard duplicates

53

54

Apache Flume

A flume is a chasm or trench with a stream in it. See, because loggers would dig a trench
down a mountainside, and you put logs in it, and ZOOM, off they go. This is also where log
rides came from. Sun’s setting, take your final log and ride it down the log flume! Fun /
deadly. I’m just assuming.

Anyways, it shouldn’t need saying, but a FLUME is a LOG STREAM. Basically. This doesn’t
even count as a metaphor, it’s literally what it is. Figuratively literally. Best project name.

Back to real log flumes, they bring all the logs down to the river, where log drivers bundle
them up and guide them down river to a sawmill.
https://www.youtube.com/watch?v=upsZZ2s3xv8

55

Remaining Issues…

• What if there’s a BIG burst?
• If we can’t examine all of it, what

can we do so that the lost data
causes us the least harm

• It’ll never be harmless
• More = Better

• High volume
• Might not be

possible to store all
of it

• Might not be
possible to even
examine all of it

56

Algorithmic
Solutions

57

Sampling – only keep
some data

Problem: At any point, you might
get too much data to process

Solution: Randomly Sample the
Data

Complication: How to do this in a
fair way?

If you decide to throw out 1 in 4 values,
when the burst dies down you’re throwing

away data you could have used!

58

Reservoir Sampling
Problem: Select S values uniformly at random from a stream of N
values
Assumption: N is very big, and not known ahead of time (it’s a stream!)

Solution:
• Store first S values
• When receiving kth keep it with probability S/k

• If keeping it, randomly discard one of the existing S elements to
make room

59

Reservoir Sampling, Example

S = 10
• Keep first 10 elements
• 11th element is kept with P = 10/11
• 12th element is kept with P = 10/12
• …

60

Proof?

Claim: For K >= S, all values
V1 … Vk have a probability S
/ K of being in the reservoir.

Proof will be by induction,
of course! Who doesn’t
love a good induction?

61

Basis for Induction: K = S+1

S = 4 because I don’t want 11 boxes
Pr[Toss V5] = 1/5 (i.e. 1 – S/K)

Pr[Toss V1] = 1/S * Pr[Keep V5]
= 4/5 * 1/4 = 1/5

Pr[Toss V2] = 1/S * Pr[Keep V5]
= 4/5 * 1/4 = 1/5

…

V1 V2 V3 V4

Reservoir

V5

1/5

4/5

1/4
1/41/41/4

62

Assumption
Assume that for some K > S, all K values have a S / K chance of being in
the reservoir.

What are the chances the K+1 value is kept?
S / (K + 1)

What are the chances an existing item is kept?
1 – (S / (K + 1) x (1 / S)) = K / (K + 1)

What are the chances an item survives to K + 1?
S / K x K / (K + 1) = S / (K + 1)

So, by induction, blah blah blah, for all K > S, after K values have been seen, each value has
a uniform S / K chance of being retained in the reservoir

Very hand-wavey induction

63

Hashing
Common Multiset operations that hashing can be used to estimate
• Cardinality: How many unique elements in the multiset?
• Membership: Is X a member of the multiset?
• Frequency: How often does X appear in the multiset?

64

HyperLogLog Counter (HLL)

Task: Estimate cardinality of a multiset (number of unique elements)

Observation: hash(item) -> vector of e.g. 32 bits

½ of items will have a hash code starting with 0
¼ of items will have a hash code starting with 00
…

How does this help us?

65

HyperLogLog Counter

If we’ve seen ~64 elements, we would Expect (As in E[…]) that
One of them would start with 000000 (6 zeros, 1 in 64 items)

All we need to do is record the longest string of leading 0s we’ve seen
in any hash codes!

If we’ve seen x, our estimate is we’ve seen approximately 2x unique
items.

It’s a Log Log counter because the number of leading zeros in a 32-bit number X is going to
be around 32 – log2(X)
And we treat this as an estimator of the log2 of the cardinality of the set.

66

Bloom Filters

Problem: Set is too large to hold, want to know if it contains X

Solution: a bit-vector of m bits, and k unique hash functions.

0 0 0 0 0 0 0 0 0 0 0 0

67

0 0 0 0 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11

Bloom Filters: put

68

0 1 0 0 1 0 0 0 0 0 1 0

xput

Bloom Filters: put

69

0 1 0 0 1 0 0 0 0 0 1 0

xcontains h1(x) = 2
h2(x) = 5
h3(x) = 11

Bloom Filters: contains

70

0 1 0 0 1 0 0 0 0 0 1 0

xcontains h1(x) = 2
h2(x) = 5
h3(x) = 11

AND = YES
A[h1(x)]
A[h2(x)]
A[h3(x)]

Bloom Filters: contains

71

0 1 0 0 1 0 0 0 0 0 1 0

ycontains h1(y) = 2
h2(y) = 6
h3(y) = 9

Bloom Filters: contains

72

0 1 0 0 1 0 0 0 0 0 1 0

ycontains h1(y) = 2
h2(y) = 6
h3(y) = 9

AND = NO
A[h1(y)]
A[h2(y)]
A[h3(y)]

Bloom Filters: contains

73

Bloom Filters

No false negatives. If it’s been seen, all of it’s bits are set to 1
False positives: The more unique elements seen, the more bits are set
to 1.

Can tune false positive rate by adjusting values for m and k

74

Count-Min Sketch (CM Sketch)

Counting the frequency of a value X within a multiset

Like Bloom Filters, we have a vector-length m and k independent
hashes

Unlike Bloom Filters, each hash has its own int-vector of m bits!

75

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

Count-Min Sketches: put

76

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0

xput

Count-Min Sketches: put

77

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0

xput h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

Count-Min Sketches: put

78

0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 2 0 0 0 0 0 0 0 0

xput

Count-Min Sketches: put

79

0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 2 0 0 0 0 0 0 0 0

yput h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2

Count-Min Sketches: put

80

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yput

Count-Min Sketches: put

81

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

xget h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

Count-Min Sketches: get

82

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

xget h1(x) = 2
h2(x) = 5
h3(x) = 11
h4(x) = 4

A[h3(x)]MIN = 2

A[h1(x)]
A[h2(x)]

A[h4(x)]

Count-Min Sketches: get

83

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yget h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2

Count-Min Sketches: get

84

0 2 0 0 0 1 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 1

0 1 0 2 0 0 0 0 0 0 0 0

yget h1(y) = 6
h2(y) = 5
h3(y) = 12
h4(y) = 2

MIN = 1 A[h3(y)]

A[h1(y)]
A[h2(y)]

A[h4(y)]

Count-Min Sketches: get

85

OPTIONAL KAFKA STUFF TO FILL TIME

86

Writing data to Kafka

• You use Kafka “producers” to write data to Kafka brokers.
• Available for JVM (Java, Scala), C/C++, Python, Ruby, etc.

• A simple example producer:

87

87

Producers
• Two types of producers: “async” and “sync”

• Same API and configuration, but slightly different semantics.
• What applies to a sync producer almost always applies to async, too.
• Async producer is preferred when you want higher throughput.

88

88

Producers
• Two aspects worth mentioning because they significantly influence Kafka

performance:

1. Message acking
2. Batching of messages

89

89

1) Message acking
• Background:

• In Kafka, a message is considered committed when “any required” replica for
that partition have applied it to their data log.

• Message acking is about conveying this “Yes, committed!” information back
from the brokers to the producer client.

• Exact meaning of “any required” is defined by request.required.acks.

• Only producers must configure acking
• Exact behavior is configured via request.required.acks, which determines

when a produce request is considered completed.
• Allows you to trade latency (speed) <-> durability (data safety).
• Consumers: Acking and how you configured it on the side of producers do not

matter to consumers because only committed messages are ever given out to
consumers. They don’t need to worry about potentially seeing a message that
could be lost if the leader fails.

90

90

1) Message acking
• Typical values of request.required.acks

• 0: producer never waits for an ack from the broker.
• Gives the lowest latency but the weakest durability guarantees.

• 1: producer gets an ack after the leader replica has received the data.
• Gives better durability as the we wait until the lead broker acks the request. Only msgs that were

written to the now-dead leader but not yet replicated will be lost.

• -1: producer gets an ack after all replicas have received the data.
• Gives the best durability as Kafka guarantees that no data will be lost as long as at least one

replica remains.

be
tte

r
la

te
nc

y
be

tte
r

du
ra

bi
lit

y

91

91

2) Batching of messages
• Batching improves throughput

• Tradeoff is data loss if client dies before pending messages have been sent.

• You have two options to “batch” messages:
1. Use send(listOfMessages).

• Sync producer: will send this list (“batch”) of messages right now. Blocks!
• Async producer: will send this list of messages in background “as usual”, i.e. according

to batch-related configuration settings. Does not block!

2. Use send(singleMessage)with async producer.

• For async the behavior is the same as send(listOfMessages).

92

92

Reading data from Kafka

93

93

Reading data from Kafka

• You use Kafka “consumers” to write data to Kafka
brokers.

• Available for JVM (Java, Scala), C/C++, Python, Ruby, etc.

94

94

Reading data from Kafka

• Consumers pull from Kafka (there’s no push)
• Allows consumers to control their pace of consumption.
• Allows to design downstream apps for average load, not peak load

• Consumers are responsible to track their read positions aka
“offsets”

95

95

Reading data from Kafka

• Consumer “groups”
• Allows multi-threaded and/or multi-machine consumption from Kafka topics.
• Consumers “join” a group by using the same group.id
• Kafka guarantees a message is only ever read by a single consumer in a group.

• Kafka assigns the partitions of a topic to the consumers in a group so that each partition is consumed by exactly one consumer
in the group.

• Maximum parallelism of a consumer group: #consumers (in the group) <= #partitions

96

96

Guarantees when reading data from Kafka

• A message is only ever read by a single consumer in a group.
• A consumer sees messages in the order they were stored in

the log.
• The order of messages is only guaranteed within a partition.

97

97

Rebalancing: how consumers meet brokers

• The assignment of brokers – via the partitions of a topic – to consumers is quite important, and it
is dynamic at run-time.

98

98

