
Data-Intensive 
Distributed 
Computing
CS431/451/631/651

Module 9 – Mutable State

Visual : Change.  Because with mutable state we can CHANGE the data.  Ohohohohoho

Anyway, this is the last module that’s on the final exam!  It doesn’t have a corresponding 
assignment so…I’ll keep it simple on the exam.

I guess I could leave it out but then what’s the point of coming to class this week???
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Structure of the Course

“Core” framework features and 
algorithm design for batch processing
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Beyond Batch Processing

Mutable State

When you’re out of green bars, simply make more.
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Mutable State

Until Now
Sequential Reads

Append-Only Writes

What About
Random Reads

Random Writes

In other words, what if we wanted a distributed database after all?
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Why not RDBMS?

• Does not scale out  expensive
• Does not support semi-structured data
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NoSQL

Not only SQL  -- Doesn’t mean there 
is no SQL!  (There MAY not be)

Common Features
• Horizontal Scaling
• Replicated and Distributed Data
• Weaker Concurrency (not ACID)
• Flexible Schemas 
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SQL vs. NoSQL

SQL
Vertically 
scalable

Fixed schema

Mature

~ TB

Strong 
consistency

NoSQL
Horizontally 

scalable

Dynamic 
schema

Emerging

~ PB

Eventual 
consistency

Some of them are 
strong

Or none?  Or fixed…

How long until we 
can change this 

diagram?

“They’re more like guidelines than actual rules…”

Hadoop with Hive / SparkSQL is (mostly) NoSQL.  Except, cannot update tables.  Or, hmmm, 
can you?
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SQL vs. NoSQL

Atomicity
Consistency
Isolation
Durability

Basically
Available
Soft State
Eventually consistent

ACID: The “Gold 
Standard” of RDBMS

BASE: The “good 
enough” of NoSQL

Basically Available?  Like, yeah, within reason.  Without your own reactors you’ll never 
promise 100% availability.
Soft State – State might change even without a “triggering” input.  (Because of the next 
part)
Eventually consistent.  An update may result in inconsistent state…but it will eventually 
become consistent again.

(That’s why the state has to be soft)
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Types of Database

Relational (OLTP) Database
Analytical (OLAP) Database

Key-Value Stores
Column Stores
Document-Based
Graph-Based

SQL NoSQL

An Analytical Database is not PER SE relational.  The star schema makes a hypercube out of 
relations, but an OLAP database only needs hypercubes, so it doesn’t NEED relations.
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NoSQL Databases

Key-Value 
Stores

Memcached, 
Redis, Scalaris, 

etc.

Column Stores

BigTable (Google), 
HBase (Apache), 

Cassandra 
(Apache), 

Hypertable (RIP 
2016)

Document 
Stores

CouchDB, 
MongoDB, 

OrientDB, etc.

Graph Stores

Neo4J, InfoGrid, 
Flock DB 
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Common Questions to Ask

Partitioning 
(Sharding) Replication In-Memory 

Caching

How do you track 
partitions?

How do you add, 
remove?

How do you keep 
replicas consistent?

How do you maintain 
cache consistency?

Oh, a fourth question, actually!  What are the keys?  What are the values?
The keys are (almost) always strings.  What the values are varies by system…here, let’s take 
a look

Fun “Fact” (that might not be true)

I refuse to Google it in case I’m wrong, but I’m PRETTY sure “Sharding” as a term for 
partitioning dates back to Ultima Online!  As the first real MMORPG they could not handle 
all players on a single server like MUDs could, so they created separate “worlds”.  The in-
game explanation was that a wizard did it (Mondain shattered the world crystal, and now 
each “shard” has a parallel version of Britannia).

True Fact: In highschool my friend Bruce cut class to play UO.  He was a crafter.  We joked 
he was skipping woodshop to make fake cabinets instead of real ones. 
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What they all have in common

Keys are Strings Distributed / Clustered
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Key-Value Stores

A Map is a Database.  Maps keys onto values.  

Queries: “What value does this key have?”
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Keys in the Cluster

Problem: In your cluster of 400 
servers, which has the key “X”?

• What if that machine is down?
• What if I add a new machine?
• What if I retire a machine?

• (Unlike “down”, this is 
permanent)

In A P2P setup joins and 
departs are very 

common!  

As are network 
interruptions
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Consistent Hashing (Peer to Peer)

• Each Peer is assigned m-bit GUID by consistent hashing (e.g. SHA1)
• For each key k, it’s assigned to the first node in the ring with a GUID 

at least h(k) – Same hash function as used to determine GUID
• This is called successor(k)
• Because we’re looking for the first GUID g >= k

DHT – Distributed Hash Table
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What’s the benefit? 

For K keys and N nodes

With high probability:
• Each node has at most (1 + ε)K/N keys assigned to it

Therefore:
• When nodes connect/disconnect, only O(K/N) keys need remapping

Depends on your 
definition of “high”, and 

on hash code size
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Chord distributed protocol
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Stoica et al. (2001). Chord: A Scalable Peer-to-peer Lookup 
Service for Internet Applications. SIGCOMM.
And other resources …
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h = 0n = 2m

18

First Attempt:

Each node has a 
pointer to its 
predecessor and 
successor

You might want more bits to avoid hash collisions, this is about minimums.
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h = 0n = 2m

Routing: Which machine holds the key?

Each machine holds pointers 
to predecessor and successor

Send request to any node, gets 
routed to correct one in O(n) hops

Can we do better?

19
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h = 0n = 2m

Routing: Which machine holds the key?

Each machine holds pointers 
to predecessor and successor

Send request to any node, gets 
routed to correct one in O(log n) hops

+ “finger table”
(+2, +4, +8, …)
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UGH, it’s 
successor(h+2), 

NOT 2 steps 
forward in the 

ring!  

This diagram is 
misleading!
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About that log(n) to find successor(k)

• Jump as far as you can without going over k
• Repeat until using the “one step” link – that’s pointing to successor(k)
• Since working by powers of 2, will follow each “level” at most once
• There are m = log2 n levels, thus, O(log n) jumps needed

Complication: Ring is mostly missing!  

Solution: Rounding.  Finger i doesn’t need to point exactly 2i steps away, just 
as close as you can get.  In other words…it points to successor(self + 2i)
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h = 0n = 2m

Routing: Which machine holds the key?

Simpler Solution
Service
Registry
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DHT is designed for Peer-to-Peer where there is no central repository.  If you want a central 
controller, you can simplify things…
Just ask the registry who is responsible for which key!  O(1) messages
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h = 0h = 2n – 1

New machine joins: What happens?

How do we rebuild the predecessor, 
successor, finger tables?

Cf. Gossip Protocols

23
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New Node, Who’s This?

Need to maintain two invariants
• Each Node (correctly) knows its successor in the ring

• And, in fact, the whole finger table

• For every key k node successor(k) is responsible for k
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New Node, Who’s This?

New Node needs a finger table
• Naïve – run a query per entry – O(m log n)
• Better – query based on previous entry – O(log2 n)
• Best – Take successor’s table and update only entries that might be 

wrong – O(log n)

Let’s not worry about the details, eh?
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What about everyone else?

Nodes that were not contacted by the new one might have out-dated 
finger tables!

Solution:  Stabilization process in the background updates finger tables 
periodically

Theorem: With high probability, adds (and removes) require O(log2 N) 
messages to re-establish the invariant
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h = 0n = 2m

Machine fails: What happens?

Solution: Replication

Covered!

27

How would you solve replication in this sort of pattern???
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However…

Most NoSQL systems 
are not peer-to-peer.  
Joins and Leaves are 

not common.  

So, none of the 
following use Chords 

for their DHT
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Memcached

• Simple Distributed Key-Value Store
• Value is arbitrary bytes.  Treated as black box

• Distributed
• Client hashes keys to pick server

• Disconnected
• Shared Nothing.  Servers do not know about each other
• (No Replication)

• Not Persistent
• Cache!  “Forgetting is a feature”

Purpose: To cache things
If you want to keep it: Put it somewhere else, too!
Basically, if you’ve got free RAM on your cluster, make a Memcached cluster and use it to 
cache results.  Might boost performance a lot. Might not.

Originally for caching dynamic webpages to avoid hitting the database
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Finding your Key in Memcached

• Key x is held on h(x) % NUM_SERVERS

If a server goes down:
• It’s content is gone forever.  Like tears in the rain

If you add or remove a server from the cluster: 
• oops, all cache misses

There is no “reshuffle” – It’s only meant as a cache layer.  If the number of servers changes, 
clients look to the wrong server.
It doesn’t have the key, so it’s fetched from the source.  The server that used to hold that 
key will have its value expire eventually
(Again, it’s a cache!  The servers don’t talk to each other so there’s no way to coordinate a 
reshuffle even if that was desired)
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Redis

• Calls itself a “Data-structure Server”
• Value types include lists, hashes, sets, streams, HLL Counters
• Extendable 

• Distributed
• Client hashes key to determine server
• Redundancy / Replication

• Coordinated
• Servers talk to each other  
• Efficient resharding

• Persistent
• Stores everything in RAM, but persists to HDD

“red-kiss” without the k .  REmote DIctionary Server

Purpose: Also good for caching things.  Lets you update values with a wide variety of 
common data structures / operations
“Eventual” Consistency.

Scales up to 16K nodes!

Adding a new node: reassign buckets from existing servers to new one, trying to even the 
load
Server dies: buckets reassigned and recreated from replicas
Server getting full: reassign some of its buckets to other servers.

Hash-Tags.  Keys with {hash-tags} only hash the tag.  (Lets you ensure related keys are all on 
the same server)

31



Finding your key in Redis

Key x is held in bucket h(x) % 16384

Cluster coordinates who has what buckets!  (With replication)

If a server goes down: Find the replica bucket
If a server gets added/removed: Reassign buckets to maintain balance

Oh dear, it can only scale up to 16384 servers???

(Well no, you can have replicas and load-balance…still, 16384 Redis nodes is extreme 
overkill)
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Redis Stack

Adds a lot of bells and whistles!

Searchable / Queriable JSON documents as values

Secondary Indexing for Redis (or any NoSQL, or any RDBMS)

Those are just two of the main features
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Document 
Stores

AKA “Semi-Structured Data Stores”
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• Keys – Strings
• Values – JSON-like documents with optional schema

• Schema is PER VALUE
• Each document has its own, each document can be different!

• Allows indexing and queries
• Claimed to be ACID compliant

• Isn’t

Fun story – before it made a lot of news, the default security settings allowed anybody to 
access the system, and bound to all network interfaces – TL;DR: if you could find a 
MongoDB install you could probably take it over

Eventually changed the default to only bind to localhost – need to explicitly allow network 
access if you need it
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• Keys – Strings
• Values – JSON Documents

• Per document schemas (optional)

• Uses MVCC for Eventual Consistency
• Claims “Document-Level ACID Semantics”

• Still not ACID

• MapReduce evaluation model (Javascript)
• “Views” – Map-like construction
• “Query” – Reduce-like aggregation

Another 
Apache 
Project
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MVCC – Multi-Value Concurrency Control

BORING

x

x is 3, when you run x <- 5, now 
it’s 5.  
Just lock your table and it’ll be 
consistent! (SNORE)

EXCITING

x

x is a linked list, sorted by time 
(descending order)

When you start a query at t2 it 
looks backward for a time <= t2

3 (5, t3) (3, t2)

I made an In-Memory MVCC library for Racket…it was fun, which tells you something about 
my views on fun, I guess…
https://github.com/djholtby/versioned-box

Read/Write transactions will create a hash table for variables, and write values there!
When trying to commit the transaction: consult all keys in the “update” table.  If they all 
have the same timestamp as they did when read from,
Then the transaction is consistent and can be committed!  If not, it must be restarted from 
the beginning.

Read-only transactions are consistent (not necessarily consistent with NOW, but consistent 
with when they were initiated)
Write-only transactions are consistent (because they don’t care about prior state)
Need a universal synchronized time though.  CouchDB has per-document “revision 
numbers”.  

Free bonus: you can “see past versions” like it was a git repo!  For free, it’s part of how 
MVCC works!  Of course you probably want to garbage collect if you’re not PLANNING to 
have snapshots for every last change.  (My library prunes old versions if there are no active 
transactions older than the timestamp.  Easy on Racket, just set the next link to null and the 
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garbage collector will see the tail as unreachable and collect it)

Most modern databases use MVCC instead of locks, but then hide from the user as an 
unimportant detail.  Perhaps it is?
An MVCC system cannot be distinguished from a lock-based system…if you allow for “maybe 
this query was instant but the network was slow” ;)

Basically if you start a query transaction, read some tables, and that’s the end, it behaves 
exactly like your query ran atomically and instantly the moment it was received, even if it 
took 2 minutes to run and even if the data changed during those 2 minutes.  That’s ACID for 
you.
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Graph-Based 
Databases

Silly powerpoint, not that kind of graph!  Oh well…
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Neo4J

• Stores Graphs
• Everything is a Node, Edge, or Attribute

• Attributes are applied to nodes and/or edges

• ACID compliant transactions
• Commercial, with open-source “community edition”

I’ve never used a graph-based DB but have always been tempted…
Seems like it would work well for a MUD…rooms are nodes, mobs, PCs etc are attributes 
that move around the graph…  
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(Wide) Column Stores

40



Google BigTable

• Maps 2 strings (row key, column key) and timestamp to an arbitrary 
byte stream

• Black Box, doesn’t matter what the value is

• Example Use Case:
• Row Key – URL
• Col Key – Attribute of a website (content, metadata, etc)
• Now you’ve got a way to store snapshots of the web

• Gives your robots somewhere to put things while they’re crawling

• Has Bloom filters at the row and row+col level

If you’ve forgot, a bloom filter is a probabilistic data structure for testing whether 
something exists

In the example: row level => “Have we seen this URL?”
Row+col level => “Do we have this attribute for this URL?”

A “no” is always correct.  A “yes” can be incorrect
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HBase

• HBase is to BigTable as Hadoop is to Google’s MapReduce
• Part of the Hadoop Ecosystem, in other words!

• Backed by HDFS
• Hadoop Jobs can read from / write to HBase tables

Hi, I’m an Orca, 
not an elephant!  
How unusual for 
something built 

on Hadoop!
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Apache: Hey can I copy your homework?
Google: Sure, just change it a little so it doesn’t look obvious
Apache: Sure thing!

MapReduce

GoogleFS

BigTable
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What’s 
Google Use 
It For?

Gmail

Webcrawling

Google Earth

Google Analytics

MapReduce (read from and write to)
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45

These next few slides are all about BigTable, but Hbase is basically identical

Data Model
A table in Bigtable is a sparse, distributed, persistent  multidimensional sorted map

Map indexed by a row key, column key, and a timestamp
(row:string, column:string, time:int64)  uninterpreted byte array

Supports lookups, inserts, deletes
Single row transactions only

https://livebook.manning.com/book/google-cloud-platform-in-action/chapter-7/40
45
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Rows and Columns

Rows maintained in sorted lexicographic order
Applications can exploit this property for efficient row scans

Row ranges dynamically partitioned into tablets

Columns grouped into column families
Column key = family:qualifier

Column families provide locality hints
Unbounded number of columns
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row, column family, column qualifier, timestamp value

Key-Values
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In Memory On Disk

Mutability Easy Mutability Hard

Small Big

Okay, so how do we build it?

49
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Log Structured Merge Trees (LSMT)

MemStoreWrites Reads

Fast, Mutable, 
Small

What if we run 
out of RAM?
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Log Structured Merge Trees (LSMT)

MemStoreWrites Reads

DiskStore

Flush to disk

Slow, Immutable, 
Indexed, Sorted 

by Key

Key not in 
memory? Want 

old version?

What if there’s no new version of a row+col key in memory?
What if there is, but our transaction is looking for an older version?
Reads need to come from both sources.
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Log Structured Merge Trees (LSMT)

MemStoreWrites Reads

DiskStore

Flush to disk

Merge

What if we need another 
flush?  Cannot append, 

breaks sort order!
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Log Structured Merge Trees (LSMT)

MemStoreWrites Reads

DiskStore

Flush to disk

Merge

DiskStore DiskStore

Scaling?

Surely we don’t want to have to do a 1000-way merge each time we read???
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Log Structured Merge Trees (LSMT)

MemStoreWrites Reads

DiskStore
A

Flush to disk

Merge

DiskStore
B

DiskStore
C

DiskStore
A+B+C

Compact

They’re sorted, so reads are using “Merge” from Merge-Sort.  We can use the same 
algorithm to merge multiple DiskStores into a single one.
Sound familiar?

(It should, it’s what MapReduce does for its intermediate files, too!  A lot of the tech is the 
same)
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Log Structured Merge Trees (LSMT)

MemStoreWrites Reads

DiskStore

Merge

DiskStore DiskStore

Write-Ahead-
Log

WAL

All writes are first logged, then updates applied in memory.  Old writes are periodically 
spilled to disk.
WAL is a common DB thing.  

In event of DiskStore loss – WAL can be replayed to reconstruct lost data

Replication: Forward WAL to other nodes, they can apply the writes to their replica!  This is 
how Postgres replication / snapshotting works
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That’s one Machine.  Cluster?

Building Blocks for Hfile (BigTable):

HDFS (GFS)
HFile (SSTable)
Region (Tablet)
Region Server (Tablet Server)
Zookeeper (Chubby)
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HFile (SSTable)

The Disk Store from before – Key-Value Pairs, sorted by key.  

Immutable.  (Because it’s stored to HDFS / GFS)

Each node has its own.  
Replicate for redundancy 

Free!  (HDFS)

57



Region (Tablet)

• A Partition of Rows within one Table
• Dynamic!
• One Region : Many HFiles

H
Fi

le

Region
keys: aardvark - base

H
Fi

le

H
Fi

le

H
Fi

le
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Region Server (Tablet Server)

• Each Region gets assigned to ONE Region Server at a time
• Can be reassigned

Region
keys: aardvark - base

Region
keys: baseball - cactus

Region
keys: cadaver - doge

Region Server A

Region Server B

Who did 
this???

Not Shown – Each Region Server also acts as the secondary server for other regions.  A 
secondary region server cannot write, only read.  (And the reads might contain stale data 
that hasn’t been replicated from the primary server)
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HMaster (BigTable Master)

• Assigns Regions to Region Servers
• Adds and removes Region Servers
• Load balances Region assignments
• Garbage Collection
• Handles Schema Changes
• Handles (Some) Structural Changes

• Table Creation / Deletion
• Region Merging 

What about 
Region Splits?

Region Splits are initiated by Region servers.  When the region they’re responsible gets too 
big, they’ll split it into two ranges and ask the HMaster consider rebalancing Region 
assignments.
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Image Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

HBase – Big Picture

61

The zookeeper cluster is there to stop a bunch of annoying clients from pestering the 
HMaster all the time
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Consistency
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Why do we care about consistency
Alice transfers $100 to Carol, and Bob transfers $50 to Carol
• The total amount of money must remain the same
• Bank mad if money is created
• Customers mad if money is destroyed

Bob removes an RTX4090 from his shopping cart because his fire insurance 
won’t cover it
• Clicks another page and it’s back again
• Removes again
• Still there
• Gets an error about removing something that doesn’t exist
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Why do we care about consistency
Doug posts pictures from his vacation on Facebook
• First he changes his gallery settings so his mom can’t see the gallery
• Then he posts the picture
• Oh no!  His mom can still see his embarrassing photos!  Scandalous!

Eve unsubscribes from Piazza emails, then posts in the “say hi” thread
• Eve still gets notifications every time someone replies
• It doesn’t stop for several hours!  There are almost 1000 students 

taking CS135 this term!
• Based on a True Story™

We deeply regret this turn of events and after the 225% term do not have a “say hi” post as 
part of A0
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Consistency – All Nodes Return the Same 
Value SELECT balance FROM account 

WHERE id = 12345;     =>  $3.50
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Availability – Node failures do not prevent 
operation SELECT balance FROM account 

WHERE id = 12345;     =>  $3.50
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Partition Tolerance – System operates despite 
network partition

Even if the link goes down, the network still operates in two partitions, and customers in 
Vancouver and Toronto are both unaffected (other than not being able to connect to each 
other, if that’s relevant)
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CAP Theorem

• Consistency
• All node see the same values at the same time

• Availability
• If a node fails, the network continues to operate

• Partition-Tolerance
• The system operates despite network partitions

Theorem: Pick 2.  You cannot have all 3
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CAP Theorem

C A

P

X

… pick two
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CAP Theorem

• This suggests there are three kinds of 
distributed systems: 

• CP: Big Table and Hbase
• AP: DNS 
• CA: Impossible in distributed systems

Impossible?  You said pick any two!

CAP theorem is misstated…it actually means “when faced with a network partition, do you 
stay available, or stay consistent?
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Impossible?

• CAP Theorem is misstated.  It’s more like:
“If there is a network partition, does your network remain Available or 
Consistent?  You can only choose one”
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CAP Theorem: Proof

• A simple proof using two nodes:

A B
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CAP Theorem: Proof

• A simple proof using two nodes:

A B

Not Consistent!

Respond to client
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CAP Theorem: Proof

• A simple proof using two nodes:

A B

Not Available!

Wait to be updated
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CAP Theorem: Proof

• A simple proof using two nodes:

A B

Not Partition 
Tolerant!

A gets updated from B

It’s easy to be CA if partitions can’t happen!  But if they do, you can’t be both.  
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Types of Consistency
• Strong Consistency

• After the update completes, any subsequent access will return the 
same updated value.

We even have meme consistency!

78



Coordinator

subordinates

Okay everyone, 
PREPARE! YES

YES

YES

Good.
COMMIT!

ACK!

ACK!

ACK!

DONE!

2 Phase Commit: Sketch

79
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Coordinator

subordinates

Okay everyone, 
PREPARE! YES

YES

NO

ABORT!

2 Phase Commit: Sketch

80
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2PC: Assumptions and Limitations

Assumptions:
Persistent storage and write-ahead log at every node

WAL is never permanently lost

Limitations:
It’s blocking and slow

What if the coordinator dies?

81
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Distributed Consensus
More general problem: addresses replication and partitioning 

Time

… Paxos

Hi everyone, 
let’s change 

the value of x.
Hi everyone, 

let’s execute a 
transaction t.

82

Assumption: Faulty nodes fail arbitrarily, so you should assume worst case behavior, 
HOWEVER, faulty nodes do not COLLUDE.  (If they do, that is Byzantine Agreement, a 
harder problem than Consensus)

82



Paxos Algorithm

• 3 Types of Nodes
• Proposers advocate for client requests to change a value
• Acceptors decide whether to accept a change
• Learners remember values

• Acceptors are grouped into Quorums 
• Every Quorum must contain a majority of all acceptors
• No two Quorums can be disjoint

A Machine 
might be all 3 
types of node!

PowerPoint tells me readers won’t know what majority means, and I should say “most of 
the acceptors”.  
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Paxos Protocol

Proposer wants to change the value to v
1. Selects proposal number n that is greater than all previous 

proposals
2. Proposes n to a Quorum of nodes (or more / all nodes)
3. Nodes that receive the message either:

1. Promise to reject all future proposals < n
2. Reject, if they’ve made a similar promise in the past (and n is too small)

4. If a Quorum have sent Promises back, Proposer sends an Accept 
message

5. Acceptors then accept this value *

They also 
send the 

most 
recently 

Accepted 
proposal, if 

any

• - if they haven’t made another promise in the meantime

• Note -
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Proposer Acceptors Learners

Propose(1)

Propose(1)

Propose(1)

With 3 accepters, ANY 2 accepters will form a Quorum.  
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Proposer Acceptors Learners

Promise(1,V1)
Promise(1,V2)

Promise(1,V3)

The promise values V1, V2, V3, are a pair of the form (m, w) where m is ID (unique number) 
of the most recent proposal that this accepter accepted, and w is the value that the 
acceptor accepted.  If the accepter has never accepted a proposal, then this is an empty 
response.
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Proposer Acceptors Learners

Accept(1,V)

Accept(1,V)

Accept(1,V)

After receiving a Quorum of Promises, Proposer tells them to accept value V.
This V will be either:
• The most recent value sent by an Acceptor as part of their Promise
• The value the Proposer was advocating for (ONLY if all Acceptors sent back “None”) 
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Proposer Acceptors Learners

Accepted(1,V)

Accepted(1,V)

Accepted(1,V)

Acceptors now accept value V.  They notify Proposer that they have accepted it, and 
forward the values to the Learners.
Learners Learn this value, if they get a Quorum of Accepted messages.
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That’s the 
simplified 
version
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Want 
More?

Take a distributed 
systems course!

Oh wait…isn’t this 
one of those?

It’s not…it’s a distributed computing course!  We talk a LITTLE about how the systems are 
engineered, but not how to build them in detail.  Sorry.
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Types of Consistency

• Strong Consistency
• After an update operation, all subsequent access will return the same value

• Weak Consistency
• After an update operation, some access will return the new value, and others

the old value

• Eventual Consistency
• Special form of Weak Consistency
• After an update at time t0 all access after some time t1 > t0 will return the 

same value 
• If there were no other updates to that value after the first one
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Eventual Consistency 
In Real Systems

Consider an ATM

• You’d want Strong Consistency, right?

• An ATM that doesn’t work makes customers 
unhappy (Availability > Consistency)

• ATM will work even if partitioned
• BUT will limit your transaction size to $200

• If you didn’t have that amount after all, overdraft 
fees! 

Of course if you deposit into a partitioned ATM and then to buy groceries, then you get 
overdraft fees because your deposit isn’t in the system yet, and won’t be until the ATM’s 
network connection is restored.
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Eventual Consistency In Real Systems
• Bob says to Alice “You haven’t liked my Facebook post!”
• Alice doesn’t see any new posts
• Bob sees it and is confused
• Later that day, it shows up in Alice’s feed

• She still doesn’t like it.  Bob needs to seek validation from within, not from 
pretend Social Media points
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Why is Facebook Eventually Consistent?

• Did the network get partitioned? 
• Probably not
• It’s a huge distributed network of datacenters, is why

• If would be unworkable to have strong consistency AND low latency
• If it took 1-2 minutes for a post to stop spinning, people would give up
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Source: www.facebook.com/note.php?note_id=23844338919

MySQL

memcached

Read path:
Look in memcached
Look in MySQL
Populate in memcached

Write path:
Write in MySQL
Remove in memcached

Subsequent read:
Look in MySQL
Populate in memcached

Facebook Architecture

95



1. User updates first name from “Jason” to “Monkey”.
2. Write “Monkey” in master DB in CA, delete memcached entry in CA and VA.
3. Someone goes to profile in Virginia, read VA replica DB, get “Jason”.
4. Update VA memcache with first name as “Jason”.
5. Replication catches up. “Jason” stuck in memcached until another write!

Source: www.facebook.com/note.php?note_id=23844338919

MySQL

memcached

California

MySQL

memcached

Virginia

Replication lag

Facebook Architecture: Multi-DC
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Source: www.facebook.com/note.php?note_id=23844338919

= stream of SQL statements

Solution: Piggyback on replication stream, tweak SQL
REPLACE INTO profile (`first_name`) VALUES ('Monkey’)
WHERE `user_id`='jsobel' MEMCACHE_DIRTY 'jsobel:first_name'

Facebook Architecture: Multi-DC

MySQL

memcached

California

MySQL

memcached

Virginia

Replication
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What if there are no partitions?

• Tradeoff between Consistency and Latency:
• Caused by the possibility of failure in distributed systems

• High availability -> replicate data -> consistency problem
• Basic idea:

• Availability and latency are arguably the same thing: unavailable -
> extreme high latency

• Achieving different levels of consistency/availability takes different 
amount of time
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CAP -> PACELC

• A more complete description of the space of potential 
tradeoffs for distributed system:

• If there is a partition (P), how does the system trade off 
availability and consistency (A and C); else (E), when the system is 
running normally in the absence of partitions, how does the 
system trade off latency (L) and consistency (C)?

Abadi, Daniel J. "Consistency tradeoffs in modern distributed database 
system design." Computer-IEEE Computer Magazine 45.2 (2012): 37.
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Really rolls of the tongue
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Partition?Yes No

Availability Consistency Latency Consistency

Pick One Trade-off
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Examples
• PA/EL Systems: Give up both Cs for availability and lower 

latency
– Dynamo, Cassandra, Riak

• PC/EC Systems: Refuse to give up consistency and pay 
the cost of availability and latency
– BigTable, Hbase, VoltDB/H-Store, any ACID DB

• PA/EC Systems: Give up consistency when a partition 
happens and keep consistency in normal operations
– MongoDB

• PC/EL System: Keep consistency if a partition occurs but 
gives up consistency for latency in normal operations
– Azure Cosmos*

What?  So Cosmos is consistent when partitioned, but not otherwise?
Sort of.  It lets you tune your parameters, so you CAN make it PC/EL if you want to. Or 
PC/EC
If there’s a partition, one partition is unavailable, so it’s NOT PA. If you elect for EL it’s not 
really PC either though, since it has only eventual consistency.
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Image Source: http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html

HBase – Big Picture
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Not a Column 
Store, but a 

Column Family 
Store

Back to this slide again, now that we’ve talked about types of systems.  HBase is PC/EC.  
Seems like not?  Let’s dig in

UPDATE: Someone in class asked about “StoreFile” vs “HFile“ – these are synonyms.  
StoreFile is the java object, Hfile is the actual file on HDFS.
The distinction is made in some diagrams as old versions of HBase used the MapFile
format, where the StoreFile will be put into two files: the MapFile and the IndexFile.  
Newer versions use an HFile, which contains both the key-value pairs and the index.

Also important here: Instead of each column being in its own store entirely, they’re 
grouped by family.
If columns within a family are normally read/updated together, you get all the benefits of a 
column store, with fewer penalties.
(Of course if you only need one column within a family, you’re reading unnecessary data 
still)
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HBase is PC/EC? So it has poor latency?

No.  HBase is low latency, 
has non-blocking reads, 
and strong consistency!

How can this be?  Think 
about the design!
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How HBase does it

Transactions are only allowed to update a single row
• With an appropriate row key that’s often not much of a limit
• Only ONE Region Server oversees a given Region

– It uses MVCC for ACID semantics
– All row queries see results consistent with the moment the 

transaction begins
– All row updates happen in isolation

• You can think of each row being its own database!
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Write Path

Region Server

PUT

HLog

1
Column Fam 2Column Fam 1

.

.

.

MEMMEM

2

HFile
HFile

HFile
HFile

3ACK

1. Region Server writes transaction into WAL (Called the HLog) HDFS replicates this across 
the cluster, though not instantly

2. Region Server writes transaction into MemStore for each affected Column Family
3. Region informs client that transaction has been committed
4. As needed, MemStore is spilled to an additional Hfile

1. To keep the number of files low, HFiles may be merged (compacted)
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What’s in an HFile

Sorted key-value pairs (+ an index header for fast lookups)

Key?

(row, family, qualifier, timestamp)

The timestamp is used for MVCC

djholtby hair style Mar-03-
1999

Short, 
Spiked

djholtby hair colour Mar-03-
1999

Brown, 
frosted 
tips

djholtby beard style Mar-03-
1999

goatee

djholtby beard colour Mar-03-
1999

brown

djholtby hair style Nov-25-
2022

balding

djholtby beard colour Nov-25-
2022

Brown & 
Gray

It wouldn’t have 
values that old

Strong 
Consistency!

The Region is partitioned 
by column family, so not 
needed to actually store 

this
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What’s in a MemStore?

The content is the same

It’s stored in a skip list, sorted by the 3-tuple key

Skip lists are cool, end of discussion
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Read Path

When read transaction starts, makes note of time
• Retrieve all requested columns with a timestamp <= read start

That’s all there is to it!  In a typical case, at least…
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Read Path, Replicated Edition

What happens if the row you want belongs to a Region where 
the Region Server is not responding?

1. You can read immediately from the secondary Region Server 
for that Region

1. It might not have replayed a relevant WAL entry yet – stale data 
2. You can also wait until all WAL entries from your start time 

have been replayed
1. High Latency

In other words at the client’s discretion HBase is either EC or EL.  The system is both.  It lets 
the client pick their favoured tradeoff
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Failure Recovery

When a Region Server comes back online, it 
has only lost the MemStore

• Using the HFiles it knows when the last 
flush happened

• Using the HLog, it can replay all writes 
after the flush, recreating the MemStore
exactly as it was
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Merges

Two types of HFile Merges Happen

1. Fast Merge – Merges two smaller HFiles together.  Frequent
2. Full Merge – Merges ALL HFiles for a given Column Family

1. Also garbage collects – any timestamps earlier than the oldest query 
will never be read and can be pruned

2. Any “delete” markers that do not have an earlier “write” can be 
removed

Why are these needed 
to begin with?

“Delete” markers are needed because in MVCC you can’t simply delete a value from the 
table.  A query might be running and it needs to see the value as it appeared at the start of 
the query transaction (consistency / isolation).

Also, HDFS doesn’t let you delete lines from a file anyway, so it’s not physically possible to 
delete from one of the HFiles. 
It WOULD be possible to delete from the MemStore, but that’s still not done because of 
the MVCC issue.

During compaction, only the most recent entry from before the oldest still-active query can 
be pruned.  If a delete marker is the “oldest” surviving entry then it’s unnecessary and can 
also be pruned.  
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