Part 6: Analyzing Relational Data (2/3)

Ali Abedi
external APIs

Frontend
Backend

users

Frontend
Backend

users

Frontend
Backend

OLTP database

OLTP database

OLTP database

ETL (Extract, Transform, and Load)

“Data Lake”

Data Warehouse

Other tools
SQL on Hadoop
“Traditional” BI tools

data scientists
What’s the selling point of SQL-on-Hadoop?
Trade (a little?) performance for flexibility
SQL-on-Hadoop

Today: How all of this works...
Hive: Example

Relational join on two tables:
Table of word counts from Shakespeare collection
Table of word counts from the bible

```
SELECT s.word, s.freq, k.freq
FROM shakespeare s
JOIN bible k ON (s.word = k.word)
WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;
```

<table>
<thead>
<tr>
<th>Word</th>
<th>Shakespeare</th>
<th>Bible</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>25848</td>
<td>62394</td>
</tr>
<tr>
<td>I</td>
<td>23031</td>
<td>8854</td>
</tr>
<tr>
<td>and</td>
<td>19671</td>
<td>38985</td>
</tr>
<tr>
<td>to</td>
<td>18038</td>
<td>13526</td>
</tr>
<tr>
<td>of</td>
<td>16700</td>
<td>34654</td>
</tr>
<tr>
<td>a</td>
<td>14170</td>
<td>8057</td>
</tr>
<tr>
<td>you</td>
<td>12702</td>
<td>2720</td>
</tr>
<tr>
<td>my</td>
<td>11297</td>
<td>4135</td>
</tr>
<tr>
<td>in</td>
<td>10797</td>
<td>12445</td>
</tr>
<tr>
<td>is</td>
<td>8882</td>
<td>6884</td>
</tr>
</tbody>
</table>

Source: Material drawn from Cloudera training VM
Hive: Behind the Scenes

SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;
Hive: Behind the Scenes

Stage Dependencies:
Stage 1 is a root stage.
Stage 0 is a root stage.
Stage 2 depends on stages: Stage 1, Stage 0.

Stage Plans:
Stage 1
Map Reduce
Alias
TableScan
Filter Operator
predicate:
expr: (freq >= 1)
type: boolean
Reduce Output Operator
key expressions:
expr: word
type: string
Map
reduce partition columns:
expr: word
type: string
Map-reduce-root: +
value expressions:
expr: freq
type: int
expr: word
type: string
Reduce Operator Tree:
Join Operator
condition map:
0 [VALUE._col0] [VALUE._col1]
1 [VALUE._col0] [VALUE._col1] [VALUE._col2]
Filter Operator
predicate:
expr: (freq >= 1) and (word >= 1)
Select Operator
expressions:
expr: _col1
type: string
expr: _col0
type: int
expr: _col2
type: int
outputColumnNames: _col0, _col1, _col2
File Output Operator
compressed: false
GlobalTableId: 0
table:
input format: org.apache.hadoop.mapred.TextInputFormat
output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

Stage 2
Map Reduce
Alias
TableScan
Filter Operator
predicate:
expr: (freq >= 1)
type: boolean
value expressions:
expr: word
type: string
expr: freq
type: int
expr: col2
type: int
 Reduce Operator Tree:
Extract
Limit
File Output Operator
compressed: false
GlobalTableId: 0
table:
input format: org.apache.hadoop.mapred.SequenceFileInputFormat
output format: org.apache.hadoop.hive.SequenceFileOutputFormat

Stage 0
Fetch Operator
limit: 10
Hive Implementation

Metastore holds metadata
- Tables schemas (field names, field types, etc.) and encoding
- Permission information (roles and users)

Hive data stored in HDFS
- Tables in directories
- Partitions of tables in sub-directories
- Actual data in files (plain text or binary encoded)

This is actually a good feature because when we want to execute a query we can only read needed files (disk optimization)
MapReduce algorithms for processing relational data
Relational Algebra

Primitives
- Projection (\(\pi\))
- Selection (\(\sigma\))
- Cartesian product (\(\times\))
- Set union (\(\cup\))
- Set difference (\(\neg\))
- Rename (\(\rho\))

Other Operations
- Join (\(\bowtie\))
- Group by... aggregation

...
Selection

R₁
R₂
R₃
R₄
R₅

σ

R₁
R₃

R₁
R₃
Selection in MapReduce

Easy!
In mapper: process each tuple, only emit tuples that meet criteria
Can be pipelined with projection
No reducers necessary (unless to do something else)

Performance mostly limited by HDFS throughput
Speed of encoding/decoding tuples becomes important
Take advantage of compression when available
Semistructured data? No problem!
Projection

\[\pi_1(\mathcal{O}) \]

\[
\begin{array}{cccc}
R_1 & R_2 & R_3 & R_4 \\
\hline
\text{Blue} & \text{Green} & \text{Orange} & \text{Yellow} \\
\text{Red} & \text{Pink} & \text{Purple} & \text{Green} \\
\text{Yellow} & \text{Orange} & \text{Blue} & \text{Red} \\
\text{Purple} & \text{Pink} & \text{Red} & \text{Yellow} \\
\text{Green} & \text{Yellow} & \text{Purple} & \text{Pink} \\
\end{array}
\]
Projection in MapReduce

Easy!
In mapper: process each tuple, re-emit with only projected attributes
Can be pipelined with selection
No reducers necessary (unless to do something else)

Implementation detail: bookkeeping required
Need to keep track of attribute mappings after projection
e.g., name was r[4], becomes r[1] after projection

Performance mostly limited by HDFS throughput
Speed of encoding/decoding tuples becomes important
Take advantage of compression when available
Semistructured data? No problem!
Group by... Aggregation

Aggregation functions:
AVG, MAX, MIN, SUM, COUNT, ...

MapReduce implementation:
Map over dataset, emit tuples, keyed by group by attribute
Framework automatically groups values by group by attribute
Compute aggregation function in reducer
Optimize with combiners, in-mapper combining

You already know how to do this!
Combiner Design

Combiners and reducers share same method signature
Sometimes, reducers can serve as combiners
Often, not...

Remember: combiner are optional optimizations
Should not affect algorithm correctness
May be run 0, 1, or multiple times

Example: find average of integers associated with the same key
SELECT key, AVG(value) FROM r GROUP BY key;
Computing the Mean: Version 1

class Mapper {
 def map(key: Text, value: Int, context: Context) = {
 context.write(key, value)
 }
}

class Reducer {
 def reduce(key: Text, values: Iterable[Int], context: Context) {
 for (value <- values) {
 sum += value
 cnt += 1
 }
 context.write(key, sum/cnt)
 }
}
Computing the Mean: Version 2

class Mapper {
 def map(key: Text, value: Int, context: Context) =
 context.write(key, value)
}

class Combiner {
 def reduce(key: Text, values: Iterable[Int], context: Context) = {
 for (value <- values) {
 sum += value
 cnt += 1
 }
 context.write(key, (sum, cnt))
 }
}

class Reducer {
 def reduce(key: Text, values: Iterable[Pair], context: Context) = {
 for (value <- values) {
 sum += value.left
 cnt += value.right
 }
 context.write(key, sum/cnt)
 }
}
class Mapper {
 def map(key: Text, value: Int, context: Context) =
 context.write(key, (value, 1))
}

class Combiner {
 def reduce(key: Text, values: Iterable[Pair], context: Context) = {
 for (value <- values) {
 sum += value.left
 cnt += value.right
 }
 context.write(key, (sum, cnt))
 }
}

class Reducer {
 def reduce(key: Text, values: Iterable[Pair], context: Context) = {
 for (value <- values) {
 sum += value.left
 cnt += value.right
 }
 context.write(key, sum/cnt)
 }
}
class Mapper {
 val sums = new HashMap()
 val counts = new HashMap()

 def map(key: Text, value: Int, context: Context) = {
 sums(key) += value
 counts(key) += 1
 }

 def cleanup(context: Context) = {
 for (key <- counts) {
 context.write(key, (sums(key), counts(key)))
 }
 }
}
Relational Joins
Relational Joins

(More precisely, an inner join)
Types of Relationships

- Many-to-Many
- One-to-Many
- One-to-One
Join Algorithms in MapReduce

Reduce-side join
aka repartition join
aka shuffle join

Map-side join
aka sort-merge join

Hash join
aka broadcast join
aka replicated join
Reduce-side Join
aka repartition join, shuffle join

Basic idea: group by join key
Map over both datasets
Emit tuple as value with join key as the intermediate key
Execution framework brings together tuples sharing the same key
Perform join in reducer

Two variants
1-to-1 joins
1-to-many and many-to-many joins
Reduce-side Join: 1-to-1

Map

Reduce

Note: no guarantee if R is going to come first or S

More precisely, an inner join: What about outer joins?
Reduce-side Join: 1-to-many

Map

Reduce

What's the problem?
Secondary Sorting

MapReduce sorts input to reducers by key

Values may be arbitrarily ordered

What if we want to sort value also?

E.g., \(k \rightarrow (v_1, r), (v_3, r), (v_4, r), (v_8, r) \ldots \)
Value-to-Key Conversion

Before

\[k \rightarrow (v_8, r_4), (v_3, r_1), (v_4, r_3), (v_2, r_2) \ldots \]

Values arrive in arbitrary order...

After

\[(k, v_1) \rightarrow r_1 \quad \text{Values arrive in sorted order...} \]
\[(k, v_3) \rightarrow r_2 \quad \text{Process by preserving state across multiple keys} \]
\[(k, v_4) \rightarrow r_3 \quad \text{Remember to partition correctly!} \]
\[(k, v_8) \rightarrow r_4 \]
\[\ldots \]
Reduce-side Join: V-to-K Conversion

In reducer...

<table>
<thead>
<tr>
<th>keys</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₃</td>
<td></td>
</tr>
<tr>
<td>S₂</td>
<td></td>
</tr>
<tr>
<td>S₃</td>
<td></td>
</tr>
<tr>
<td>S₉</td>
<td></td>
</tr>
<tr>
<td>R₄</td>
<td></td>
</tr>
<tr>
<td>S₁</td>
<td></td>
</tr>
<tr>
<td>S₇</td>
<td></td>
</tr>
</tbody>
</table>
Reduce-side Join: many-to-many

In reducer...

- Keys
 - R₃
 - R₅
 - R₈
 - S₂
 - S₃
 - S₉

- Values

{Hold in memory
Cross with records from other dataset

What's the problem?
Map-side Join
aka sort-merge join

Assume two datasets are sorted by the join key:

R₁, R₂, R₃, R₄

S₁, S₂, S₃, S₄

merge to join
Map-side Join
aka sort-merge join

Assume two datasets are sorted by the join key:

merge to join

merge to join

How can we parallelize this? Co-partitioning
Map-side Join
aka sort-merge join

Works if...
Two datasets are co-partitioned
Sorted by join key

MapReduce implementation:
Map over one dataset, read from other corresponding partition
No reducers necessary (unless to do something else)

Co-partitioned, sorted datasets: realistic to expect?
Hash Join
aka broadcast join, replicated join

Basic idea:
Load one dataset into memory in a hashmap, keyed by join key
Read other dataset, probe for join key

Works if...
R << S and R fits into memory <When?

MapReduce implementation:
Distribute R to all nodes (e.g., DistributedCache)
Map over S, each mapper loads R in memory and builds the hashmap
For every tuple in S, probe join key in R
No reducers necessary (unless to do something else)
Which join to use?

Hash join > map-side join > reduce-side join

Limitations of each?

In-memory join: memory
Map-side join: sort order and partitioning
Reduce-side join: general purpose
SQL-on-Hadoop

- SQL query interface
- Execution Layer
- HDFS

Other Data Sources

Hive

Spark SQL
Putting Everything Together

```
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND
    big2.f1 < 40 AND
    big2.f2 > 2;
```

Build logical plan
Optimize logical plan
Select physical plan

Note: generic SQL-on-Hadoop implementation; not exactly what Hive does, but pretty close.
Putting Everything Together

SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND
 big2.f1 < 40 AND
 big2.f2 > 2;

Build logical plan
Optimize logical plan
Select physical plan
Putting Everything Together

SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND
 big2.f1 < 40 AND
 big2.f2 > 2;

Build logical plan
Optimize logical plan
Select physical plan
Putting Everything Together

```
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND
  big2.f1 < 40 AND
  big2.f2 > 2;
```
Putting Everything Together

```
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND
  big2.f1 < 40 AND
  big2.f2 > 2;
```
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND
 big2.f1 < 40 AND
 big2.f2 > 2;
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND
 big2.f1 < 40 AND
 big2.f2 > 2;

Putting Everything Together

Build logical plan
Optimize logical plan
Select physical plan
SELECT s.word, s.freq, k.freq FROM shakespeare s
JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
ORDER BY s.freq DESC LIMIT 10;

Hive: Behind the Scenes
Now you understand what’s going on here!
Hive: Behind the Scenes
Now you understand what's going on here!
SQL-on-Hadoop

SQL query interface

Execution Layer

HDFS

Other Data Sources

Hive

Spark SQL
What about Spark SQL?

Based on the DataFrame API:
A distributed collection of data organized into named columns

Two ways of specifying SQL queries:

Directly:
```scala
val sqlContext = ... // An existing SQLContext
val df = sqlContext.sql("SELECT * FROM table")
// df is a dataframe, can be further manipulated...
```

Via DataFrame API:
```scala
// employees is a dataframe:
employees
  .join(dept, employees("deptid") === dept("id"))
  .where(employees("gender") === "female")
  .groupBy(dept("id"), dept("name"))
  .agg(count("name"))
```
Spark SQL: Query Planning

At the end of the day... it’s transformations on RDDs
Spark SQL: Physical Execution

Narrow Dependencies:
- map, filter
- union
- join with inputs co-partitioned

Wide Dependencies:
- groupByKey
- join with inputs not co-partitioned

= Map-side join
= Reduce-side join

Hash join with broadcast variables
What’s the assignment?

SQL-on-Hadoop

1. SQL query interface
2. Spark
3. HDFS

You
What’s the assignment?

```sql
select
  l_returnflag,
  l_linestatus,
  sum(l_quantity) as sum_qty,
  sum(l_extendedprice) as sum_base_price,
  sum(l_extendedprice*(1-l_discount)) as sum_disc_price,
  sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,
  avg(l_quantity) as avg_qty,
  avg(l_extendedprice) as avg_price,
  avg(l_discount) as avg_disc,
  count(*) as count_order
from lineitem
where l_shipdate = 'YYYY-MM-DD'
group by l_returnflag, l_linestatus;
```

Your task...