Data-Intensive Distributed Computing
CS 431/631 451/651 (Winter 2021)

Part 6: Analyzing Relational Data (3/3)

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details
MapReduce: A Major Step Backwards?

MapReduce is a step backward in database access

- Schemas are good
- Separation of the schema from the application is good
- High-level access languages are good

MapReduce is poor implementation

- Brute force and only brute force (no indexes, for example)

MapReduce is not novel

MapReduce is missing features

- Bulk loader, indexing, updates, transactions...

MapReduce is incompatible with DBMS tools

Source: Blog post by DeWitt and Stonebraker
SELECT * FROM Data WHERE field LIKE '%XYZ%';

The upper segments of each Hadoop bar in the graphs represent the execution time of the additional MR job to combine the output into a single file.

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.
Hadoop vs. Databases: Select

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Figure 6: Selection Task Results

Source: Pavlo et al. (2009). A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.
Hadoop vs. Databases: Aggregation

Figure 7: Aggregation Task Results (2.5 million Groups)

Figure 8: Aggregation Task Results (2,000 Groups)

```
SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP;
```

Source: Pavlo et al. (2009). A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.
Hadoop vs. Databases: Join

![Graph showing the performance comparison between Hadoop and databases for join operations across different node counts.](image)

Figure 9: Join Task Results

```
SELECT INTO Temp sourceIP, AVG(pageRank) as avgPageRank, SUM(idRevenue) as totalRevenue FROM Rankings AS R, UserVisits AS UV WHERE R.pageURL = UV.destURL AND UV.visitDate BETWEEN Date('2000-01-15') AND Date('2000-01-22') GROUP BY UV.sourceIP;

SELECT sourceIP, totalRevenue, avgPageRank FROM Temp ORDER BY totalRevenue DESC LIMIT 1;
```

Source: Pavlo et al. (2009): A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.
Why was Hadoop slow?

Integer.parseInt
String.substring
String.split

Hadoop slow because string manipulation is slow?
Key Ideas

Binary representations are good

Binary representations need schemas

Schemas allow logical/physical separation

Logical/physical separation allows you to do cool things
Logical

Physical

How bytes are actually represented in storage...
Row vs. Column Stores

Row store

Column store
Row vs. Column Stores

Row stores
Easier to modify a record: in-place updates
Might read unnecessary data when processing

Column stores
Only read necessary data when processing
Tuple writes require multiple operations
 Tuple updates are complex
Advantages of Column Stores

Inherent advantages:
- Better compression
- Read efficiency

Works well with:
- Vectorized Execution
- Compiled Queries

These are well-known in traditional databases...
Row vs. Column Stores: Compression

Row store

Column store

This compresses better with off-the-shelf tools, e.g., gzip. Why?
Row vs. Column Stores: Compression

Row store

Column store

Additional opportunities for smarter compression...
Columns Stores: RLE

Column store

Run-length encoding example:

is a foreign key, relatively small cardinality
(even better, boolean)

In reality:

Encode:

3 2 1 ...
Columns Stores: Integer Coding

Say you’re coding a bunch of integers...
VByte

Simple idea: use only as many bytes as needed
Need to reserve one bit per byte as the “continuation bit”
Use remaining bits for encoding value

Works okay, easy to implement...

Beware of branch mispredicts!
Simple-9

How many different ways can we divide up 28 bits?

- 28 1-bit numbers
- 14 2-bit numbers
- 9 3-bit numbers
- 7 4-bit numbers

(9 total ways)

Efficient decompression with hard-coded decoders
Simple Family – general idea applies to 64-bit words, etc.

Beware of branch mispredicts?
Apache Parquet

A columnar storage format available to any project in the Hadoop ecosystem, regardless of the choice of data processing framework, data model or programming language.
Advantages of Column Stores

Inherent advantages:
Better compression
Read efficiency

Works well with:
Vectorized Execution
Compiled Queries
Putting Everything Together

```sql
SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND
  big2.f1 < 40 AND
  big2.f2 > 2;
```

Build logical plan

Optimize logical plan

Select physical plan
val size = 100000000

var col = new Array[Int](size) // List of random ints
var selected = new Array[Boolean](size) // Matches a predicate?

for (i <- 0 until size) {
 selected(i) = col(i) > 0
}

for (i <- 0 until size by 8) {
 selected(i) = col(i) > 0
 selected(i+1) = col(i+1) > 0
 selected(i+2) = col(i+2) > 0
 selected(i+3) = col(i+3) > 0
 selected(i+4) = col(i+4) > 0
 selected(i+5) = col(i+5) > 0
 selected(i+6) = col(i+6) > 0
 selected(i+7) = col(i+7) > 0
}

Which is faster?
Why?

On my laptop: 409ms (avg over 10 trials)
On my laptop: 174ms (avg over 10 trials)
val size = 100000000

var col = new Array[Int][size] // List of random ints
var selected = new Array[Boolean][size] // Matches a predicate?

for (i <- 0 until size) {
 selected(i) = col(i) > 0
}

for (i <- 0 until size by 8) {
 selected(i) = col(i) > 0
 selected(i+1) = col(i+1) > 0
 selected(i+2) = col(i+2) > 0
 selected(i+3) = col(i+3) > 0
 selected(i+4) = col(i+4) > 0
 selected(i+5) = col(i+5) > 0
 selected(i+6) = col(i+6) > 0
 selected(i+7) = col(i+7) > 0
}

Why does it matter?

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

On my laptop: 409ms (avg over 10 trials) On my laptop: 174ms (avg over 10 trials)
Actually, it’s worse than that!

Each operator implements a common interface

- **open()** Initialize, reset internal state, etc.
- **next()** Advance and deliver next tuple
- **close()** Clean up, free resources, etc.

Execution driven by repeated calls
to top of operator tree
SELECT pageURL, pagerank FROM Rankings WHERE pagerank > X;

Very little actual computation is being done!
SELECT pageURL, pageRank
FROM Rankings
WHERE pageRank > X;

Solution?
val size = 100000000

var col = new Array[int][size] // List of random ints
var selected = new Array[Boolean][size] // Matches a predicate?

for (i <- 0 until size) {
 selected(i) = col(i) > 0
}

for (i <- 0 until size by 8) {
 selected(i) = col(i) > 0
 selected(i+1) = col(i+1) > 0
 selected(i+2) = col(i+2) > 0
 selected(i+3) = col(i+3) > 0
 selected(i+4) = col(i+4) > 0
 selected(i+5) = col(i+5) > 0
 selected(i+6) = col(i+6) > 0
 selected(i+7) = col(i+7) > 0
}

Vectorized Execution

next() returns a vector of tuples
All operators rewritten to work on vectors of tuples

Can we do even better?
Compiled Queries

```
select * from R1, R3,
  (select R2.x, count(*)
   from R2
   where R2.y = 3
   group by R2.x) R2
where R1.x = 7 and R1.a = R3.b and R2.x = R3.c
```

initialize memory of \(M_{emb}, M_{err}, \) and \(\Gamma_s\)
for each tuple \(t\) in \(R_1\)
 if \(t.x = 7\)
 materialize \(t\) in hash table of \(M_{emb}\)
 for each tuple \(t\) in \(R_2\)
 if \(t.y = 3\)
 aggregate \(t\) in hash table of \(\Gamma_s\)
 for each tuple \(t\) in \(\Gamma_s\)
 materialize \(t\) in hash table of \(M_{err}\)
 for each tuple \(t_3\) in \(R_3\)
 for each match \(t_3\) in \(M_{emb}[t_1, c]\)
 for each match \(t_1\) in \(M_{err}[t_2, b]\)
 output \(t_1 \circ t_2 \circ t_3\)

Source: Neumann (2011) Efficiently Compiling Efficient Query Plans for Modern Hardware. VLDB.
Compiled Queries

Example LLVM query template

```c
define internal void execConsumer(%expr.ExecutionState, %Fragment.R1* %data) {
  body:
    %lookupPtr = getelementptr inbounds %Fragment.R2* %data, i32 0, i32 0
    %lookup = load i32, %lookupPtr, align 4
    %lookup2 = load i32, %lookupPtr, align 8
    ... (loop over tuples, currently at %id, contains label %count17)
    %yPty = getelementptr inbounds %Column, i64 %id
    %y = load i32, %yPty, align 4
    %cond1 = icmp eq %y, 1
    br i1 %cond1, label %then, label %count17
  then:
    %lookupPtr = getelementptr inbounds %ColumnR, i64 %id
    %y = load i32, %lookupPtr, align 4
    %hash = uext %y, 32bits %ColumnTableIndex
    %hash2 = getelementptr inbounds %HashGroupify.Entry**, %HashTable, i32 %hash
    %hash2 = load i32, %hash2, align 8
    %cond2 = icmp eq %y, %hash2, %lookup2, %lookup, %lookupPty, label %then20
    br i1 %cond2, label %then, label %count17
  else20:
    %cond3 = icmp le %y, %count32, label %then, label %count17
    br i1 %cond3, label %then20, label %if26
    ... (create a new group, starts with label %then59)
  else26:
    ... (more loop logic)
```

1. Locate tuples in memory
2. Loop over all tuples
3. Filter $y = 3$
4. Hash z
5. Lookup in hash table (C++ data structure)
6. Not found, check space
7. Full, call C++ to allocate mem or spill

Source: Neumann (2011) Efficiently Compiling Efficient Query Plans for Modern Hardware, VLDB.
Advantages of Column Stores

Inherent advantages:
- Better compression
- Read efficiency

Works well with:
- Vectorized Execution
- Compiled Queries

These are well-known in traditional databases...
Why not in Hadoop?
Why not in Hadoop?
No reason why not!

Source: He et al. (2011) RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce-based Warehouse Systems. ICDE.
set hive.vectorized.execution.enabled = true;

Batch of rows, organized as columns:

class VectorizedRowBatch {
 boolean selectedInUse;
 int[] selected;
 int size;
 ColumnVector[] columns;
}

class LongColumnVector extends ColumnVector {
 long[] vector
}
class LongColumnAddLongScalarExpression {
 int inputColumn;
 int outputColumn;
 long scalar;

 void evaluate(VectorizedRowBatch batch) {
 long [] inVector = ((LongColumnVector)
 batch.columns[inputColumn]).vector;
 long [] outVector = ((LongColumnVector)
 batch.columns[outputColumn]).vector;
 if (batch.selectedInUse) {
 for (int j = 0; j < batch.size; j++) {
 int i = batch.selected[j];
 outVector[i] = inVector[i] + scalar;
 }
 } else {
 for (int i = 0; i < batch.size; i++) {
 outVector[i] = inVector[i] + scalar;
 }
 }
 }
}
Compiled Queries?

SELECT x, y
FROM z WHERE x * (1 - y)/100 < 434;

Predicate is “interpreted” as

LessThan(
 Multiply(Attribute("x"),
 Divide(Minus(Literal("1"), Attribute("y")), 100),
 434)
)

Slow!

Dynamic code generation
(feed AST into Scala compiler to generate bytecode):

row.get("x") * (1 - row.get("y"))/100 < 434

Much faster!
Advantages of Column Stores

Inherent advantages:
- Better compression
- Read efficiency

Works well with:
- Vectorized Execution
- Compiled Queries

Hadoop can adopt all of these optimizations!
Key Ideas

Binary representations are good
Binary representations need schemas
Schemas allow logical/physical separation
Logical/physical separation allows you to do cool things
MapReduce: A Major Step Backwards?

MapReduce is a step backward in database access

- Schemas are good
- Separation of the schema from the application is good
- High-level access languages are good

MapReduce is poor implementation

- Brute force and only brute force (no indexes, for example)

MapReduce is not novel

MapReduce is missing features

- Bulk loader, indexing, updates, transactions...

MapReduce is incompatible with DMBS tools

Source: Blog post by DeWitt and Stonebraker