Data-Intensive Distributed Computing
CS 431/631 451/651 (Winter 2021)

Part 9: Real-Time Data Analytics (1/2)

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details
Structure of the Course

“Core” framework features and algorithm design for batch processing

Analyzing Text
Analyzing Graphs
Analyzing Relational Data
Data Mining and Machine Learning

What’s beyond batch processing?
Stream Processing vs. Batch Processing

<table>
<thead>
<tr>
<th>Batch processing</th>
<th>Stream processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>All the data</td>
<td>Continuously incoming data</td>
</tr>
<tr>
<td>Not real time</td>
<td>Latency critical (near real time)</td>
</tr>
</tbody>
</table>
Use Cases Across Industries

- **Credit**
 - Identify fraudulent transactions as soon as they occur.

- **Transportation**
 - Dynamic Re-routing Of traffic or Vehicle Fleet.

- **Retail**
 - Dynamic Inventory Management
 - Real-time In-store Offers and recommendations

- **Healthcare**
 - Continuously monitor patient vital stats and proactively identify at-risk patients.

- **Manufacturing**
 - Identify equipment failures and react instantly
 - Perform Proactive maintenance.

- **Surveillance**
 - Identify threats and intrusions in real-time

- **Consumer Internet & Mobile**
 - Optimize user engagement based on user's current behavior.

- **Digital Advertising & Marketing**
 - Optimize and personalize content based on real-time information.
Canonical Stream Processing Architecture

Data Sources

Data Ingest
Kafka
Flume

Stream processing engine

Kafka

HDFS

HBase

App 1

App 2
What is a data stream?

Sequence of items:
- Structured (e.g., tuples)
- Ordered (implicitly or timestamped)
- Arriving continuously at high volumes
- Sometimes not possible to store entirely
- Sometimes not possible to even examine all items
What exactly do you do?

“Standard” relational operations:
- Select
- Project
- Transform (i.e., apply custom UDF)
- Group by
- Join
- Aggregations

What else do you need to make this “work”?
Issues of Semantics

Group by... aggregate
When do you stop grouping and start aggregating?

Joining a stream and a static source
Simple lookup

Joining two streams
How long do you wait for the join key in the other stream?

Joining two streams, group by and aggregation
When do you stop joining?

What’s the solution?
Windows restrict processing scope:

Windows based on ordering attributes (e.g., time)
Windows based on item (record) counts
Windows based on explicit markers (e.g., punctuations)
Windows on Ordering Attributes

Assumes the existence of an attribute that defines the order of stream elements (e.g., time)

Let T be the window size in units of the ordering attribute

Let T be the window size in units of the ordering attribute
Windows on Counts

Window of size N elements (sliding, tumbling) over the stream
Windows from “Punctuations”

Application-inserted “end-of-processing”
Example: stream of actions... “end of user session”

Properties
Advantage: application-controlled semantics
Disadvantage: unpredictable window size (too large or too small)
Streams Processing Challenges

Inherent challenges
 Latency requirements
 Space bounds

System challenges
 Bursty behavior and load balancing
 Out-of-order message delivery and non-determinism
 Consistency semantics (at most once, exactly once, at least once)
How do consumers get data from producers?
Producer/Consumers

Producer pushes e.g., callback
Producer/Consumers

Producer --- Consumer

Consumer pulls e.g., poll, tail
Producer/Consumers

Producer

Consumer

Consumer

Consumer

Consumer
Producer/Consumers

Queue, Pub/Sub

Producer

Producer

Kafka

Broker

Consumer

Consumer

Consumer

Consumer
Producer/Consumers

Producer
Producer
Kafka
Brokers
Consumer
Consumer
Consumer
Stream Processing Frameworks

- Apache Spark Streaming
- Apache Storm
- Apache Flink
Spark Streaming: Discretized Streams

Run a streaming computation as a series of very small, deterministic batch jobs

Chop up the stream into batches of X seconds

Process as RDDs!
Return results in batches

Source: All following Spark Streaming slides by Tathagata Das
Example: Get hashtags from Twitter

```scala
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
```

DStream: a sequence of RDD representing a stream of data

Twitter Streaming API

tweets DStream

stored in memory as an RDD (immutable, distributed)
Example: Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
Example: Get hashtags from Twitter

```scala
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")
```

- **tweets DStream**
 - Batch @ t
 - FlatMap
 - Save

- **hashTags DStream**
 - Batch @ t+1
 - FlatMap
 - Save
 - Batch @ t+2
 - FlatMap
 - Save

Output operation: to push data to external storage

Every batch saved to HDFS
Fault Tolerance

Bottom line: they’re just RDDs!
Fault Tolerance

Bottom line: they’re just RDDs!

- tweets RDD
- hashTags RDD
- input data replicated in memory
- lost partitions recomputed on other workers
Key Concepts

DStream – sequence of RDDs representing a stream of data
Twitter, HDFS, Kafka, Flume, TCP sockets

Transformations – modify data from on DStream to another
Standard RDD operations – map, countByValue, reduce, join, ...
Stateful operations – window, countByValueAndWindow, ...

Output Operations – send data to external entity
saveAsHadoopFiles – saves to HDFS
foreach – do anything with each batch of results
Example: Count the hashtags

```scala
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.countByValue()
```
Example: Count the hashtags over last 10 mins

```scala
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()
```
Example: Count the hashtags over last 10 mins

```scala
val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()
```

![Diagram showing the sliding window and countByValue operation over a sequence of timestamps](image)
Smart window-based countByValue

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1))
Smart window-based reduce

Incremental counting generalizes to many reduce operations
Need a function to “inverse reduce” (“subtract” for counting)

val tagCounts = hashtags
 .countByValueAndWindow(Minutes(10), Seconds(1))

val tagCounts = hashtags
 .reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(1))

tagCounts = hashtags
 .reduceByKeyAndWindow(lambda x,y:x+y, lambda x,y:x-y,
 Minutes(10), Seconds(1))
Performance

Can process 6 GB/sec (60M records/sec) of data on 100 nodes at sub-second latency tested

- with 100 streams of data on 100 EC2 instances with 4 cores each
Comparison with Storm

Higher throughput than Storm

- Spark Streaming: 670k records/second/node
- Storm: 115k records/second/node