
CS 456/656
Computer Networks

Mina Tahmasbi Arashloo and Bo Sun

Fall 2024

Lecture 3: Application Layer – Part 1

A note on slides

Adapted from the slides that
accompany this book.

Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

All material copyright 1996-2023
J.F Kurose and K.W. Ross, All Rights Reserved

Computer networks are complex systems

▪ They have many pieces
• Hosts, routers/switches (network

devices), links, protocols, …

▪ They can get quite large
• Thousands if not millions of hosts and

devices

▪ They are often shared among many
traffic flows

▪ They have to provide many services
to distributed applications

Computer networks are complex systems

▪ They have many pieces
• Hosts, routers/switches (network

devices), links, protocols, …

▪ They can get quite large
• Thousands if not millions of hosts and

devices

▪ They are often shared among many
traffic flows

▪ They have to provide many services
to distributed applications

Is there any hope of
organizing all the
functionality a network
should provide?

Let’s look at another
complex system for
inspiration…

Example: organization of air travel

▪ a series of steps, involving many services

ticket (purchase)

baggage (check)

gates (load)

runway takeoff

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway landing

airplane routing

airplane routing

How would you define/discuss the system of airline travel?

end-to-end transfer of person plus baggage

Example: organization of air travel

ticket (purchase)

baggage (check)

gates (load)

runway takeoff

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway landing

airplane routingairplane routing

ticketing service

baggage service

gate service

runway service

routing service

layers: each layer implements a service
▪ via its own internal-layer actions

▪ relying on services provided by layer below

Why layering?

Approach to designing/discussing complex systems:

▪ explicit structure allows identification of system’s pieces and
their relationships
• layered reference model for discussion

▪ modularization eases maintenance and updating of system
• change in layer's service implementation: transparent to rest of

system

• e.g., change in gate procedure doesn’t affect rest of system

The layered Internet protocol stack

▪ application: supporting network applications
• HTTP, IMAP, SMTP, DNS

▪ transport: process-process data transfer
• TCP, UDP

▪ network: routing of datagrams from source to
destination
• IP, routing protocols

▪ data link: data transfer between neighboring
network elements
• Ethernet, 802.11 (WiFi), PPP

▪ physical: bits “on the wire”

link

application

network

transport

physical

application

transport

network

link

physical

Services, Layering and Encapsulation

source

▪ transport-layer protocol encapsulates
application-layer message, M, with
transport layer-layer header Ht to create a
transport-layer segment
• Ht used by transport layer protocol to

implement its service

application

transport

network

link

physical

destination

application

transport

network

link

physical

Transport-layer protocol transfers M (e.g., reliably) from
one process to another, using services of network layer

Ht M

Application exchanges messages to implement some
application service using services of transport layer

M

Services, Layering and Encapsulation

source

Transport-layer protocol transfers M (e.g., reliably) from
one process to another, using services of network layer

▪ network-layer protocol encapsulates
transport-layer segment [Ht | M] with
network layer-layer header Hn to create a
network-layer datagram
• Hn used by network layer protocol to

implement its service

application

transport

network

link

physical

destination

M

application

transport

network

link

physical

MHtHn

Network-layer protocol transfers transport-layer segment
[Ht | M] from one host to another, using link layer services

Ht M

Services, Layering and Encapsulation

source

▪ link-layer protocol encapsulates network
datagram [Hn| [Ht |M], with link-layer header
Hl to create a link-layer frame

application

transport

network

link

physical

destination

application

transport

network

link

physical

Link-layer protocol transfers datagram [Hn| [Ht |M] from
host to neighboring host, using physical-layer services

MHtHnHl

Network-layer protocol transfers transport-layer segment
[Ht | M] from one host to another, using link layer services

M

Ht M

MHtHn

Encapsulation

message segment datagram frame

Matryoshka dolls (stacking dolls)

Credit: https://dribbble.com/shots/7182188-Babushka-Boi

https://dribbble.com/shots/7182188-Babushka-Boi

Common Layers in Today’s Networks

source

application

transport

network

link

physical

destination

application

transport

network

link

physical

MHtHnHl

MHtHn

Ht M

MMmessage

Ht Msegment

MHtHndatagram

frame MHtHnHl

Application Layer: 2-13

Common Layers in Today’s Networks

Application

Transport

Network

Data link

Application

Transport

Network

Data link

Network

Data link

HostHost

Network device

Physical Physical Physical

▪ The end-hosts typically implement all layers of the stack.

▪ Depending on their functionality, devices in the network
implement all or a subset of the layers.

Data link

Network device

Physical

network

link

physical
application

transport

network

link

physical

application

transport

network

link

physical

Encapsulation: an
end-end view

source

HtHn M

segment Ht

datagram

destination

HtHnHl M

HtHn M

Ht M

M HtHnHl M

HtHn M

HtHn M

HtHnHl M

router

L2 switch

message M

Ht M

Hn

frame

link

physical

We will study networks one layer at a time

▪ For the next several weeks, we will discuss the common layers in
today’s networks

▪ Starting from the top -- application layer

▪ All the way to the data link layer

We will study networks one layer at a time

▪ The Application Layer

▪ The Transport Layer

▪ The Network Layer

▪ The Data Link Layer

We will study networks one layer at a time

▪ The Application Layer

▪ The Transport Layer

▪ The Network Layer

▪ The Data Link Layer

Application layer: overview

Our goals:

▪ conceptual and implementation aspects of application-layer
protocols

▪ learn about protocols by examining popular application-layer
protocols and infrastructure

▪ programming network applications
• socket API

Some network apps

▪ social networking

▪ Web

▪ text messaging

▪ e-mail

▪ multi-user network games

▪ streaming stored video
(YouTube, Hulu, Netflix)

▪ P2P file sharing

▪ voice over IP (e.g., Skype)

▪ real-time video conferencing
(e.g., Zoom)

▪ Internet search

▪ remote login

▪ …

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application

transport

network

data link

physical

application

transport

network

data link

physical

application

transport

network

data link

physical

Creating a network app

write programs that:

▪ run on (different) end systems

▪ communicate over network

▪ e.g., web server software
communicates with browser software

no need to write software for
network-core devices

▪ network-core devices do not run user
applications

▪ applications on end systems allows
for rapid app development and
propagation

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Client-server paradigm
server:
▪ always-on host
▪ permanent network address
▪ often in data centers, for scaling

clients:
▪ contact, communicate with server
▪ may be intermittently connected
▪ may have dynamic network addresses
▪ do not communicate directly with each

other

▪ examples: Web applications

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Peer-to-peer (P2P) architecture

▪ no always-on server
▪ arbitrary end systems directly

communicate
▪ peers request service from other peers,

provide service in return to other peers
• self scalability – new peers bring new service

capacity, as well as new service demands

▪ peers are intermittently connected and
change network addresses
• complex management

▪ example: P2P file sharing [BitTorrent]

An application-layer protocol defines:

▪ types of messages exchanged,

• e.g., request, response

▪message syntax:

• what fields in messages & how fields are delineated

▪message semantics

• meaning of information in fields

▪ rules for when and how processes send & respond to messages

Open vs proprietary protocols

open protocols:

▪ defined in public standards (RFCs)

▪ everyone has access to protocol definition

▪ allows for interoperability

▪ e.g., HTTP, SMTP

proprietary protocols:

▪ e.g., Skype, Zoom

The application layer relies on the transport layer

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process

Interface

transport
Transport layer services
(e.g., reliable data delivery)

What transport service may an app need?

data integrity
▪ some apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

▪ other apps (e.g., audio) can
tolerate some loss

timing
▪ some apps (e.g., Internet

telephony, interactive games)
require low delay to be “effective”

throughput
▪ some apps (e.g., multimedia)

require minimum amount of
throughput to be “effective”

▪ other apps (“elastic apps”)
make use of whatever
throughput they get

security
▪ encryption, data integrity,

…

Transport service requirements: common apps

application

file transfer/download

e-mail

Web documents

real-time audio/video

streaming audio/video

interactive games

text messaging

data loss

no loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

no loss

throughput

elastic

elastic

elastic

audio: 5Kbps-1Mbps

video:10Kbps-5Mbps

same as above

Kbps+

elastic

time sensitive?

no

no

no

yes, 10’s msec

yes, few secs

yes, 10’s msec

yes and no

Internet applications rely on Internet transport
protocols

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process

Interface (socket)

transport
Reliable data transfer (TCP) or
Unreliable data transfer(UDP)

Internet transport protocols services

Reliable connection-based service:

▪ reliable transport between sending
and receiving process

▪ flow control: sender won’t
overwhelm receiver

▪ congestion control: throttle sender
when network overloaded

▪ connection-oriented: setup required
between client and server processes

▪ does not provide: timing, minimum
throughput guarantee, security

Unreliable connection-less
service:

▪ unreliable data transfer
between sending and receiving
process

▪ does not provide: reliability,
flow control, congestion
control, timing, throughput
guarantee, security, or
connection setup.

Internet transport protocols services

Reliable connection-based service:

▪ reliable transport between sending
and receiving process

▪ flow control: sender won’t
overwhelm receiver

▪ congestion control: throttle sender
when network overloaded

▪ connection-oriented: setup required
between client and server processes

▪ does not provide: timing, minimum
throughput guarantee, security

Unreliable connection-less
service:

▪ unreliable data transfer
between sending and receiving
process

▪ does not provide: reliability,
flow control, congestion
control, timing, throughput
guarantee, security, or
connection setup.

Example: TCP Example: UDP
Q: why bother with this one?

Why is there a UDP?

Internet applications use Internet transport protocols

application

file transfer/download

e-mail

Web documents

Internet telephony

streaming audio/video

interactive games

application
layer protocol

FTP [RFC 959]

SMTP [RFC 5321]

HTTP [RFC 7230, 9110]

SIP [RFC 3261], RTP [RFC

3550], or proprietary

HTTP [RFC 7230], DASH

WOW, FPS (proprietary)

transport protocol

TCP

TCP

TCP

TCP or UDP

TCP

UDP or TCP

Examples applications we will discuss

▪ Web applications: client-server

▪ E-Mail: client-server

▪ Video streaming: client-server

▪ P2P file distribution: peer-to-peer

Example 1: Web applications

First, a quick review…

▪ web page consists of objects, each of which can be stored on
different Web servers

▪ object can be HTML file, JPEG image, Java applet, audio file,…

▪ web page consists of base HTML-file which includes several
referenced objects, each addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

In-class Exercise

▪ Suppose you want to implement a simple web server and a
browser

▪ The user will enter the URL to the object they want to access
▪ Say, the HTML file for https://cs.uwaterloo.ca/

▪ The file is stored in a server in the CS department, where your
web server program is also running

▪ Your browser should retrieve the file and display it.

▪ How do you have the browser and server coordinate to
retrieve the file?

https://cs.uwaterloo.ca/

HTTP overview

HTTP: hypertext transfer protocol
▪ Web’s application-layer protocol
▪ client/server model:

• client: Web browser that requests,
receives, (using HTTP protocol) and
“displays” Web objects

• server: Web server that sends
(using HTTP protocol) objects in
response to requests

iPhone running
Safari browser

PC running
Firefox browser

server running
Apache Web

server

HTTP example
User enters URL:

1a. HTTP client initiates connection
to HTTP server (process) at
www.someSchool.edu

1b. HTTP server at host
www.someSchool.edu “accepts”
connection, notifying client

time

www.someSchool.edu/someDepartment/home.index

HTTP example
User enters URL:

1a. HTTP client initiates connection
to HTTP server (process) at
www.someSchool.edu

1b. HTTP server at host
www.someSchool.edu “accepts”
connection, notifying client

time

www.someSchool.edu/someDepartment/home.index

We will learn about connections later when we discuss the transport layer.
For now, what you need to know is that some transport protocols require
some coordination between the end hosts before data transfer. That’s
called connection setup or connection initiation.

HTTP example (cont.)
User enters URL:

1a. HTTP client initiates connection
to HTTP server (process) at
www.someSchool.edu

2. HTTP client sends HTTP
request message (containing
URL) on the connection.
Message indicates that client
wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu “accepts”
connection, notifying client

3. HTTP server receives request message,
forms response message containing
requested object, and sends message
to the client.

time

www.someSchool.edu/someDepartment/home.index

HTTP example (cont.)
User enters URL: www.someSchool.edu/someDepartment/home.index

5. HTTP client receives response
message containing html file,
displays html.

4. HTTP server closes
connection.

time

So, what did we learn about HTTP?

▪ Two types of HTTP messages: request, response

▪ HTTP Connection: Built on top of a reliable Connection-based transport
service

▪ HTTP is stateless

▪ Server maintains no information about past client requests

protocols that maintain “state” are complex!
▪ past history (state) must be maintained
▪ if server/client crashes, their views of “state” may

be inconsistent, must be reconciled

aside

So, what did we learn about HTTP?

▪ Two types of HTTP messages: request, response

▪ HTTP Connection: Built on top of a reliable Connection-based transport
service

▪ HTTP is stateless

▪ Server maintains no information about past client requests

HTTP request message

• ASCII (human-readable format)

header
 lines

GET /index.html HTTP/1.1\r\n

Host: www-net.cs.umass.edu\r\n

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X

10.15; rv:80.0) Gecko/20100101 Firefox/80.0 \r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n
Connection: keep-alive\r\n

\r\n

carriage return character
line-feed character

request line (GET, POST,
HEAD commands)

carriage return, line feed
at start of line indicates
end of header lines * Check out the online interactive exercises for more

examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Other HTTP request messages

POST method:
▪ web page often includes form

input
▪ user input sent from client to

server in entity body of HTTP
POST request message

GET method
▪ Requests the object at the specified URL

HEAD method:
▪ requests headers (only) that

would be returned if specified
URL were requested with an HTTP
GET method.

PUT method:
▪ uploads new file (object) to server

▪ completely replaces file that exists
at specified URL with content in
entity body of PUT HTTP request
message

▪ Can also be done with a GET request by
including user data in URL field of HTTP
GET request message (following a ‘?’):

www.somesite.com/animalsearch?monkeys&banana

HTTP response message

status line (protocol
status code status phrase)

header
 lines

data, e.g., requested
HTML file

HTTP/1.1 200 OK

Date: Tue, 08 Sep 2020 00:53:20 GMT

Server: Apache/2.4.6 (CentOS)

OpenSSL/1.0.2k-fips PHP/7.4.9

mod_perl/2.0.11 Perl/v5.16.3

Last-Modified: Tue, 01 Mar 2016 18:57:50 GMT

ETag: "a5b-52d015789ee9e"

Accept-Ranges: bytes

Content-Length: 2651

Content-Type: text/html; charset=UTF-8

\r\n

data data data data data ...

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

HTTP response status codes

200 OK
• request succeeded, requested object later in this message

301 Moved Permanently
• requested object moved, new location specified later in this message (in

Location: field)

400 Bad Request
• request msg not understood by server

404 Not Found
• requested document not found on this server

505 HTTP Version Not Supported

▪ status code appears in 1st line in server-to-client response message.
▪ some sample codes:

So, what did we learn about HTTP?

▪ Two types of HTTP messages: request, response

▪ HTTP Connection: Built on top of a reliable Connection-based transport
service

▪ HTTP is stateless

▪ Server maintains no information about past client requests

So, what did we learn about HTTP?

▪ Two types of HTTP messages: request, response

▪ HTTP Connection: Built on top of a reliable Connection-based transport
service

▪ HTTP is stateless

▪ Server maintains no information about past client requests

HTTP connections: two types

Non-persistent HTTP

1. Connection opened

2. at most one object sent
over connection

3. Connection closed

downloading multiple
objects required multiple
connections

Persistent HTTP

1. Connection opened

2. multiple objects can be
sent over single
connection between
client, and that server

3. Connection closed

Non-persistent HTTP: example
User enters URL:

1a. HTTP client initiates connection
to HTTP server (process) at
www.someSchool.edu.

2. HTTP client sends HTTP
request message (containing
URL) into connection.
Message indicates that client
wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu “accepts”
connection, notifying client

3. HTTP server receives request message,
forms response message containing
requested object, and sends message
to the client.

time

(containing text, references to 10 jpeg images)
www.someSchool.edu/someDepartment/home.index

Non-persistent HTTP: example (cont.)
User enters URL:

(containing text, references to 10 jpeg images)
www.someSchool.edu/someDepartment/home.index

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for
each of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

Non-persistent HTTP: response time

RTT (definition): time for a packet to
travel from client to server and
back

HTTP response time (per object):
▪ one RTT to initiate connection
▪ one RTT for HTTP request and first few

bytes of HTTP response to return
▪ object/file transmission time

time to
transmit
file

initiate
connection

RTT

request file

RTT

file received

time time

Non-persistent HTTP response time = 2RTT+ file transmission time

Non-persistent HTTP issues

Non-persistent HTTP issues:

▪A separate connection for each object

▪Higher response time

▪ One object: 2RTT+ file transmission time

▪ N objects: 2N*RTT+ (sum of file transmission time for the N objects)

▪ browsers often open multiple parallel TCP connections to fetch referenced objects
in parallel to improve response time.

▪Higher resource overhead:

▪ The end host operating system incurs overhead for maintaining each connection

Persistent HTTP (HTTP 1.1)

▪ server leaves connection open after sending response

▪ subsequent HTTP messages between same client/server sent over the
already established connection

▪ client sends requests as soon as it encounters a referenced object

▪ Lower response time:

▪ Response time for the first object: 2RTT + file transmission time

▪ Response time for the next (N – 1) objects: RTT + file transmission time

▪ As little as one RTT for almost all the referenced objects

▪ cutting response time in half

Persistent HTTP (HTTP 1.1)

▪ Lower response time:

▪ Response time for the first object: 2RTT + file transmission time

▪ Response time for the next (N – 1) objects: RTT + file transmission time

▪ As little as one RTT for almost all the referenced objects

▪ cutting overall response time ~in half

▪ Lower resource overhead
▪ No need to have multiple open connections to the same server to improve

response time.

Persistent HTTP (HTTP 1.1)

▪ server leaves connection open after sending response

▪ subsequent HTTP messages between same client/server sent over the
already established connection

▪ client sends requests as soon as it encounters a referenced object

▪ Lower response time

▪ Lower resource overhead

Q: why didn’t we do this from
the beginning?

So, what did we learn about HTTP?

▪ Two types of HTTP messages: request, response

▪ HTTP Connection: Built on top of a reliable Connection-based transport
service

▪ Non-persistent vs persistent connection

▪ HTTP is stateless

▪ Server maintains no information about past client requests

So, what did we learn about HTTP?

▪ Two types of HTTP messages: request, response

▪ HTTP Connection: Built on top of a reliable Connection-based transport
service

▪ Non-persistent vs persistent connection

▪ HTTP is stateless

▪ Server maintains no information about past client requests

Maintaining user/server state: cookies

Recall: HTTP GET/response
interaction is stateless

▪ no notion of multi-step exchanges of
HTTP messages to complete a Web
“transaction”
• no need for client/server to track

“state” of multi-step exchange

• all HTTP requests are independent of
each other

• no need for client/server to “recover”
from a partially-completed-but-never-
completely-completed transaction

a stateful protocol: client makes
two changes to X, or none at all

time time

X

X

X’

X’’

X’’

t’

Q: what happens if network connection or
client crashes at t’ ?

Maintaining user/server state: cookies

Web sites and client browser use
cookies to maintain some state
between transactions

four components:
1) cookie header line of HTTP response

message

2) cookie header line in next HTTP
request message

3) cookie file kept on user’s host,
managed by user’s browser

4) back-end database at Web site

Example:
▪ Susan uses browser on laptop,

visits specific e-commerce site
for first time

▪ when initial HTTP request
arrives at site, site creates:

• unique ID (aka “cookie”)

• entry in backend database
for ID

• subsequent HTTP requests
from Susan to this site will
contain cookie ID value,
allowing site to “identify”
Susan

Maintaining user/server state: cookies
client

Amazon server

usual HTTP response msg

usual HTTP response msg

cookie file

one week later:

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual HTTP request msg Amazon server
creates ID

1678 for user create
 entry

usual HTTP response
set-cookie: 1678 ebay 8734

amazon 1678

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

time time

HTTP cookies: comments

What cookies can be used for:
▪ authorization

▪ shopping carts

▪ recommendations

▪ user session state (Web e-mail)

cookies and privacy:
▪ cookies permit sites to

learn a lot about you on
their site.

▪ third party persistent
cookies (tracking cookies)
allow common identity
(cookie value) to be
tracked across multiple
web sites

aside

Challenge: How to keep state?
▪ at protocol endpoints: maintain state at

sender/receiver over multiple
transactions

▪ in messages: cookies in HTTP messages
carry state

Example: displaying a NY Times web page

nytimes.com

AdX.com

1HTTP
GET 2 HTTP

reply

43

56

NY times page with
embedded ad displayed

GET base html file
from nytimes.com

1
2

fetch ad from
AdX.com

4
5

display composed
page

7

nytimes.com (sports)

AdX.com

1634: sports, 2/15/22

NY Times: 1634

7493: NY Times sports, 2/15/22

HTTP
reply
Set cookie: 1634

4

HTTP GET
Referrer: NY Times Sports

5
HTTP reply
Set cookie: 7493

HTTP
GET

AdX: 7493

Cookies: tracking a user’s browsing behavior

“first party” cookie –
from website you chose
to visit (provides base
html file)

“third party” cookie –
from website you did not
choose to visit

Cookies: tracking a user’s browsing behavior

nytimes.com

AdX.com

1634: sports, 2/15/22

NY Times: 1634

7493: NY Times sports, 2/15/22

AdX: 7493

socks.com

1HTTP
GET

2

4

HTTP GET
Referrer: socks.com, cookie: 7493

5
HTTP reply
Set cookie: 7493

7493: socks.com, 2/16/22

AdX:
▪ tracks my web browsing

over sites with AdX ads
▪ can return targeted ads

based on browsing history

Cookies: tracking a user’s browsing behavior (one day later)

nytimes.com (arts)

AdX.com

1634: sports, 2/15/22

NY Times: 1634

7493: NY Times sports, 2/15/22

AdX: 7493

socks.com

4

HTTP GET
Referrer: nytimes.com, cookie: 7493

5
HTTP reply
Set cookie: 7493

7493: socks.com, 2/16/22

cookie: 1634

HTTP
reply

HTTP
GET

Set cookie: 1634

1634: arts, 2/17/22

7493: NY Times arts, 2/15/22

Returned ad for socks!

Cookies: tracking a user’s browsing behavior

Cookies can be used to:
▪ track user behavior on a given website (first party cookies)

▪ track user behavior across multiple websites (third party cookies)
without user ever choosing to visit tracker site (!)

▪ tracking may be invisible to user:
• rather than displayed ad triggering HTTP GET to tracker, could be an invisible

link

third party tracking via cookies:

▪ disabled by default in Firefox, Safari browsers

▪ to be disabled in Chrome browser in 2023

GDPR (EU General Data Protection Regulation) and cookies

“Natural persons may be associated with online
identifiers […] such as internet protocol addresses,
cookie identifiers or other identifiers […].

This may leave traces which, in particular when
combined with unique identifiers and other
information received by the servers, may be used to
create profiles of the natural persons and identify
them.”

GDPR, recital 30 (May 2018)

User has explicit control over
whether or not cookies are

allowed

when cookies can identify an individual, cookies
are considered personal data, subject to GDPR

personal data regulations

So, what did we learn about HTTP?

▪ Two types of HTTP messages: request, response

▪ HTTP Connection: Built on top of a reliable Connection-based transport
service

▪ Non-persistent vs persistent connection

▪ HTTP is stateless

▪ Server maintains no information about past client requests

So, what did we learn about HTTP?

▪ Two types of HTTP messages: request, response

▪ HTTP Connection: Built on top of a reliable Connection-based transport
service

▪ Non-persistent vs persistent connection

▪ HTTP is stateless

▪ Server maintains no information about past client requests

▪ HTTP can be stateful
• E.g., cookies

Improving web application performance

▪ Non-persistent HTTP connections → persistent HTTP connections

▪ Cookies can help improve performance

Improving web application performance

▪ Non-persistent HTTP connections → persistent HTTP connections

▪ Cookies can help improve performance

▪ Caching!

▪ Web caching

▪ Brower caching

Web caches

▪ user configures browser to
point to a (local) Web cache

▪ browser sends all HTTP
requests to cache

• if object in cache: cache
returns object to client

• else cache requests object
from origin server, caches
received object, then
returns object to client

Goal: satisfy client requests without involving origin server

client

Web
cache

client

origin
server

Web caches (aka proxy servers)

▪ Web cache acts as both
client and server

• server for original
requesting client

• client to origin server

Why Web caching?

▪ reduce response time for client
request
• cache is closer to client

▪ reduce traffic on an institution’s
access link

▪ server tells cache about
object’s allowable caching in
response header:

Question:

▪ What is the average delay for a web object
crossing the access link?
▪ Mostly affected by queuing delay

▪ Avg queuing delay = ҧ𝑥/(1 − 𝜆 ҧ𝑥), where 𝜆 is the
number of objects per second, and ҧ𝑥 is the average
transmission time of each object.

Caching example

origin

servers
public

 Internet

institutional

network
1 Gbps LAN

1.5 Mbps

access link

Scenario:
▪ access link rate: 1.5 Mbps
▪ RTT from institutional router to server: 2 sec
▪ average web object size: 750K bits
▪ average request rate from browsers to origin

servers: 1.8/sec

▪ What is the average response time?

▪ Response time = Internet delay + access link delay + LAN delay (negligible)

Question:

▪ What is the average delay for a web object
crossing the access link?

Caching example

origin

servers
public

 Internet

institutional

network
1 Gbps LAN

1.5 Mbps

access link

Scenario:
▪ access link rate: 1.5 Mbps
▪ RTT from institutional router to server: 2 sec
▪ average web object size: 750K bits
▪ average request rate from browsers to origin

servers: 1.8/sec

▪ What is the average response time?

delay ~= queueing delay =
 ҧ𝑥

1−𝜆 ҧ𝑥
=

0.75/1.5

1 −1.8∗0.75/1.5
= 5 secs

Response time ~= 2 secs + 5 secs = 7 secs problem: large queueing delays
and internet delay!

Question:

▪ What is the average delay for a web object
crossing the access link?

Option 1: buy a faster access link

origin

servers
public

 Internet

institutional

network
1 Gbps LAN

1.5 Mbps

access link

Scenario:
▪ access link rate: 1.5 Mbps
▪ RTT from institutional router to server: 2 sec
▪ average web object size: 750K bits
▪ average request rate from browsers to origin

servers: 1.8/sec

▪ What is the average response time?

delay ~= queueing delay =
 ҧ𝑥

1−𝜆 ҧ𝑥
=

0.75/15

1 −1.8∗0.75/15
= 0.055 secs

Response time ~= 2 secs + 0.055 secs = 2.055 secs

15 Mbps

15 Mbps

Cost: faster access link (expensive!)

Option 2: install a web cache

origin

servers
public

 Internet

institutional

network
1 Gbps LAN

1.5 Mbps

access link

Scenario:
▪ access link rate: 1.5 Mbps
▪ RTT from institutional router to server: 2 sec
▪ web object size: 750K bits
▪ average request rate from browsers to origin

servers: 1.8/sec
▪ Web cache hit ratio is 0.6:

▪ 60% requests served by cache, with negligible delay
▪ 40% requests served by origin servers

Cost: web cache (cheap!)

local web cache

Question:

▪ What is the average delay for a web object
crossing the access link?

▪ What is the average response time?

Browser caching: Conditional GET

Goal: don’t send object if browser
has up-to-date cached version

• no object transmission delay (or use
of network resources)

▪ client: specify date of browser-
cached copy in HTTP request
If-modified-since: <date>

▪ server: response contains no
object if browser-cached copy is
up-to-date:
HTTP/1.0 304 Not Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

Improving web application performance

▪ Non-persistent HTTP connections → persistent HTTP connections

▪ Cookies can help improve performance

▪ Caching!

▪ Web caching

▪ Brower caching

Improving web application performance

▪ Non-persistent HTTP connections → persistent HTTP connections

▪ Cookies can help improve performance

▪ Caching!

▪ Web caching

▪ Brower caching

▪ HTTP/2 and HTTP/3

HTTP/2

Key goal: decreased delay in multi-object HTTP requests

HTTP1.1: introduced multiple, pipelined GETs over single TCP
connection

▪ server responds in-order (FCFS: first-come-first-served scheduling) to
GET requests

▪with FCFS, small object may have to wait for transmission (head-of-
line (HOL) blocking) behind large object(s)

▪ Specially if objects ahead of them are lost and have to be retransmitted.

HTTP/2

HTTP/2: [RFC 7540, 2015] increased flexibility at server in sending
objects to client:

▪ methods, status codes, most header fields unchanged from HTTP 1.1

▪ transmission order of requested objects based on client-specified
object priority (not necessarily FCFS)

▪ push unrequested objects to client

▪ divide objects into frames, schedule frames to mitigate HOL blocking

Key goal: decreased delay in multi-object HTTP requests

Overloaded term, different from link layer frames

HTTP/2: mitigating HOL blocking
HTTP 1.1: client requests 1 large object (e.g., video file) and 3 smaller
objects

client

server

GET O1
GET O2

GET O3
GET O4

O1
O2

O3O4

object data requested

O1

O2

O3

O4

objects delivered in order requested: O2, O3, O4 wait behind O1

HTTP/2: mitigating HOL blocking
HTTP/2: objects divided into frames, frame transmission interleaved

client

server

GET O1
GET O2

GET O3
GET O4

O2

O4

object data requested

O1

O2

O3

O4

O2, O3, O4 delivered quickly, O1 slightly delayed

O3

O1

HTTP/2 to HTTP/3

HTTP/2 over single connection means:

▪ recovery from packet loss still stalls all object transmissions
• as in HTTP 1.1, browsers have incentive to open multiple parallel

TCP connections to reduce stalling, increase overall throughput

▪ no security over vanilla TCP connection

▪ HTTP/3: adds security, per object error- and congestion-
control (more pipelining) over UDP
• more on HTTP/3 in transport layer

	Slide 1: CS 456/656 Computer Networks
	Slide 2: A note on slides
	Slide 3: Computer networks are complex systems
	Slide 4: Computer networks are complex systems
	Slide 5: Example: organization of air travel
	Slide 6: Example: organization of air travel
	Slide 7: Why layering?
	Slide 8: The layered Internet protocol stack
	Slide 9: Services, Layering and Encapsulation
	Slide 10: Services, Layering and Encapsulation
	Slide 11: Services, Layering and Encapsulation
	Slide 12: Encapsulation
	Slide 13: Common Layers in Today’s Networks
	Slide 14: Common Layers in Today’s Networks
	Slide 15: Encapsulation: an end-end view
	Slide 16: We will study networks one layer at a time
	Slide 17: We will study networks one layer at a time
	Slide 18: We will study networks one layer at a time
	Slide 19: Application layer: overview
	Slide 20: Some network apps
	Slide 21: Creating a network app
	Slide 22: Client-server paradigm
	Slide 23: Peer-to-peer (P2P) architecture
	Slide 24: An application-layer protocol defines:
	Slide 25: Open vs proprietary protocols
	Slide 26: The application layer relies on the transport layer
	Slide 27: What transport service may an app need?
	Slide 28: Transport service requirements: common apps
	Slide 29: Internet applications rely on Internet transport protocols
	Slide 30: Internet transport protocols services
	Slide 31: Internet transport protocols services
	Slide 32: Internet applications use Internet transport protocols
	Slide 33: Examples applications we will discuss
	Slide 34: Example 1: Web applications
	Slide 35: In-class Exercise
	Slide 36: HTTP overview
	Slide 37: HTTP example
	Slide 38: HTTP example
	Slide 39: HTTP example (cont.)
	Slide 40: HTTP example (cont.)
	Slide 41: So, what did we learn about HTTP?
	Slide 42: So, what did we learn about HTTP?
	Slide 43: HTTP request message
	Slide 44: HTTP request message: general format
	Slide 45: Other HTTP request messages
	Slide 46: HTTP response message
	Slide 47: HTTP response status codes
	Slide 48: So, what did we learn about HTTP?
	Slide 49: So, what did we learn about HTTP?
	Slide 50: HTTP connections: two types
	Slide 51: Non-persistent HTTP: example
	Slide 52: Non-persistent HTTP: example (cont.)
	Slide 53: Non-persistent HTTP: response time
	Slide 54: Non-persistent HTTP issues
	Slide 55: Persistent HTTP (HTTP 1.1)
	Slide 56: Persistent HTTP (HTTP 1.1)
	Slide 57: Persistent HTTP (HTTP 1.1)
	Slide 58: So, what did we learn about HTTP?
	Slide 59: So, what did we learn about HTTP?
	Slide 60: Maintaining user/server state: cookies
	Slide 61: Maintaining user/server state: cookies
	Slide 62: Maintaining user/server state: cookies
	Slide 63: HTTP cookies: comments
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 70
	Slide 71: So, what did we learn about HTTP?
	Slide 72: So, what did we learn about HTTP?
	Slide 73: Improving web application performance
	Slide 74: Improving web application performance
	Slide 75: Web caches
	Slide 76: Web caches (aka proxy servers)
	Slide 77: Caching example
	Slide 78: Caching example
	Slide 79: Option 1: buy a faster access link
	Slide 80: Option 2: install a web cache
	Slide 82: Browser caching: Conditional GET
	Slide 83: Improving web application performance
	Slide 84: Improving web application performance
	Slide 85: HTTP/2
	Slide 86: HTTP/2
	Slide 87: HTTP/2: mitigating HOL blocking
	Slide 88: HTTP/2: mitigating HOL blocking
	Slide 89: HTTP/2 to HTTP/3

