
CS 456/656
Computer Networks

Mina Tahmasbi Arashloo and Bo Sun

Fall 2024

Lecture 4: Application Layer – Part 2



A note on slides

Adapted from the slides that 
accompany this book.

Computer Networking: A 
Top-Down Approach 
8th edition 
Jim Kurose, Keith Ross
Pearson, 2020

All material copyright 1996-2023
J.F Kurose and K.W. Ross, All Rights Reserved



Examples applications we will discuss

▪ Web applications: client-server

▪ Fetching data for network applications from servers

▪ Using a reliable connection-based transport-layer service

▪ Video streaming: client-server

▪ P2P file distribution: peer-to-peer

▪ E-Mail: client-server
How?



Communicating with the transport layer

source

application

transport

network

link

physical

destination

application

transport

network

link

physical

Application exchanges messages to 
implement some application service 

using services of transport layer

M



Communicating with the transport layer

source

application

transport

network

link

physical

destination

application

transport

network

link

physical

Application exchanges messages to 
implement some application service 

using services of transport layer

M

How do applications communicate 
with the transport layer?



Communicating with the transport layer

The application should specify

▪ The destination that will receive the data

▪What type of transport service it wants

▪ Connection-based or connection-less?

▪ Reliable or unreliable?

▪ …

▪ The data that should be sent

??



Communication endpoints are processes

process: program running 
within a host

▪within same host, two 
processes communicate 
using  inter-process 
communication (defined by 
operating system)

▪processes in different hosts 
communicate by exchanging 
messages over the network.

▪ note: applications with 
P2P architectures have 
client processes & 
server processes

client process: process that 
initiates communication

server process: process 
that waits to be contacted

clients, servers



Addressing processes

▪ to receive messages, process  
must have identifier

▪ host device has unique 32-bit 
IP address

▪Q: How do we find the IP 
address?



Addressing processes

▪ to receive messages, process  
must have identifier

▪ host device has unique 32-bit 
IP address

▪Q: does  IP address of host on 
which process runs suffice for 
identifying the process?

▪ identifier includes both IP address 
and port numbers associated with 
process on host.

▪ example port numbers:
• HTTP server: 80

• mail server: 25

▪ to send HTTP message to 
gaia.cs.umass.edu web server:
• IP address: 128.119.245.12

• port number: 80

▪ A: no, many processes 
can be running on 
same host



Communicating with the transport layer

The application should specify

▪ The destination that will receive the data

▪What type of transport service it wants

▪ Connection-based or connection-less?

▪ Reliable or unreliable?

▪ …

▪ The data that should be sent

Using Internet protocols

IP address and port

▪ TCP for reliable 
connection-based service

▪UDP for unreliable 
connection-less service

▪ For applications using the Internet protocols, 
the common interface to the transport layer 
is the socket interface.



Sockets
▪ process sends/receives messages to/from its socket

▪ socket analogous to door

• sending process shoves message out door

• sending process relies on transport infrastructure on other side of 
door to deliver message to socket at receiving process

• two sockets involved: one on each side

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket



Socket programming 

goal: learn how to build client/server applications that 
communicate using sockets

socket: door between application process and end-to- end 
transport protocol 

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket



Socket programming 

Two socket types for two transport services:
▪ UDP: unreliable datagram 
▪ TCP: reliable, byte stream-oriented

Application Example:
1. client reads a line of characters (data) from its keyboard and sends 

data to server
2. server receives the data and converts characters to uppercase
3. server sends modified data to client
4. client receives modified data and displays line on its screen



Socket programming with UDP 

UDP: no “connection” between 
client and server:

▪ no handshaking before sending data
▪ sender attaches IP destination address 

and port # to each packet
▪ receiver extracts sender IP address and 

port# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:
▪ UDP provides unreliable transfer of groups of bytes (“datagrams”)  

between client and server processes



Client/server socket interaction: UDP

close

clientSocket

read datagram from

clientSocket

create socket:

clientSocket =

socket(AF_INET,SOCK_DGRAM)

Create datagram with serverIP address

And port=x; send datagram via

clientSocket

create socket, port= x:

serverSocket =

socket(AF_INET,SOCK_DGRAM)

read datagram from

serverSocket

write reply to

serverSocket

specifying 

client address,

port number

server (running on serverIP) client



Example app: UDP client

from socket import *

serverName = 'hostname'

serverPort = 12000

clientSocket = socket(AF_INET, 

                                   SOCK_DGRAM)

message = input('Input lowercase sentence:')

clientSocket.sendto(message.encode(),

                                      (serverName, serverPort))

modifiedMessage, serverAddress = 

                                   clientSocket.recvfrom(2048)

print(modifiedMessage.decode())

clientSocket.close()

Python UDPClient

include Python’s socket library

create UDP socket

get user keyboard input 

attach server name, port to message; send into socket

print out received string and close socket

read reply data (bytes) from socket

Note: this code update (2023) to Python 3



Example app: UDP server
Python UDPServer

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind(('', serverPort))

print('The server is ready to receive')

while True:

    message, clientAddress = serverSocket.recvfrom(2048)

    modifiedMessage = message.decode().upper()

    serverSocket.sendto(modifiedMessage.encode(),

                                      clientAddress)

create UDP socket

bind socket to local port number 12000

loop forever

Read from UDP socket into message, getting 
client’s address (client IP and port)

send upper case string back to this client

Note: this code update (2023) to Python 3



Socket programming with TCP

Client must contact server

▪ To establish a connection

▪ server must have created a socket 
(door) that welcomes client’s 
contact

▪ Client creates TCP socket, 
specifying IP address, port number 
of server process

▪ when client creates socket: client 
TCP establishes connection to 
server TCP

▪when contacted by client, server 
TCP creates new socket for server 
process to communicate with that 
particular client
• allows server to establish connections 

with multiple clients
• client source port # and IP address used 

to distinguish clients (more in Chap 3)

TCP provides reliable, in-order
byte-stream transfer (“pipe”) 
between client and server 
processes

Application viewpoint



Client/server socket interaction: TCP

server (running on hostid) client

wait for incoming

connection request
connectionSocket =

serverSocket.accept()

create socket,
port=x, for incoming 

request:
serverSocket = socket()

create socket,
connect to hostid, port=x

clientSocket = socket()

send request using

clientSocketread request from

connectionSocket

write reply to

connectionSocket

TCP 
connection setup

close

connectionSocket

read reply from

clientSocket

close

clientSocket



Example app: TCP client

from socket import *

serverName = 'servername'

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName,serverPort))

sentence = input('Input lowercase sentence:')

clientSocket.send(sentence.encode())

modifiedSentence = clientSocket.recv(1024)

print ('From Server:', modifiedSentence.decode())

clientSocket.close()

Python TCPClient

create TCP socket for server, 

remote port 12000

No need to attach server name, port 

Note: this code update (2023) to Python 3



Example app: TCP server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind(('',serverPort))

serverSocket.listen(1)

print('The server is ready to receive')

while True:

     connectionSocket, addr = serverSocket.accept()

     

     sentence = connectionSocket.recv(1024).decode()

     capitalizedSentence = sentence.upper()

     connectionSocket.send(capitalizedSentence.

                                                            encode())

     connectionSocket.close()

Python TCPServer

create TCP welcoming socket

server begins listening for  

incoming TCP requests

loop forever

server waits on accept() for incoming 
requests, new socket created on return

read bytes from socket (but 

not address as in UDP)

close connection to this client (but not 

welcoming socket)

Note: this code update (2023) to Python 3



▪ Is the socket interface the only interface? 
• It is the most common, but there are others

• Applications have evolved quite a lot since the Socket API was created

• They want options more than just reliable vs unreliable service
• E.g., performance, security, semi-reliability, etc.

• Research question: What is a good interface for the application to tell the 
transport layer about their needs?

• We’ll talk more about this when we discuss the transport layer

Communicating with the transport layer



Examples applications we will discuss

▪ Web applications: client-server

▪ Video streaming: client-server

▪ P2P file distribution: peer-to-peer

▪ E-Mail: client-server



Example: Video Streaming

▪ video: sequence of images 
displayed at constant rate

• e.g., 24 images/sec

▪ digital image: array of pixels

• each pixel represented by bits

▪ coding: use redundancy within and 
between images to decrease # bits 
used to encode image

• spatial (within image)

• temporal (from one image to 
next)

……………………..

spatial coding example: instead 

of sending N values of same 

color (all purple), send only two 

values: color  value (purple)  and 

number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example: 

instead of sending 

complete frame at i+1, 

send only differences from 

frame i



Example: Video Streaming

……………………..

spatial coding example: instead 

of sending N values of same 

color (all purple), send only two 

values: color  value (purple)  and 

number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example: 

instead of sending 

complete frame at i+1, 

send only differences from 

frame i

▪ CBR: (constant bit rate): video 
encoding rate fixed

▪ VBR:  (variable bit rate): video 
encoding rate changes as 
amount of spatial, temporal 
coding changes 

▪ examples:

• MPEG 1 (CD-ROM) 1.5 Mbps

• MPEG2 (DVD) 3-6 Mbps

• MPEG4 (often used in 
Internet,  64Kbps – 12 Mbps)



Main challenges: 
▪ server-to-client bandwidth will vary over time, with changing network 

congestion levels (in house, access network, network core, video 
server)

▪ packet loss, delay due to congestion will delay playout, or result in 
poor video quality

Streaming stored video
simple scenario:

video server

(stored video)
client

Internet



Streaming stored video

1. video
recorded 
(e.g., 30 
frames/sec)

2. video
sent

streaming: at this time, client  playing out 
early part of video, while server still sending 
later part of video

time

3. video received, played out at client
(30 frames/sec)

network delay
(fixed in this 

example)



Streaming stored video: challenges

▪ continuous playout constraint: during client 
video playout, playout timing must match 
original timing 
• … but network delays are variable (jitter), so will 

need client-side buffer to match continuous playout 
constraint

▪ other challenges:

• client interactivity: pause, fast-forward, rewind, 
jump through video

• video packets may be lost, retransmitted



Streaming stored video: playout buffering

constant bit 
      rate video
transmission

time

variable
network

delay

client video
reception

constant bit 
     rate video
 playout at client

client playout
delay

b
u

ff
er

ed
vi

d
eo

▪client-side buffering and playout delay: compensate for 
network-added delay, delay jitter



Video streaming in practice

▪ stream video traffic: major consumer of 
Internet bandwidth
• Netflix, YouTube, Amazon Prime: 80% of 

residential ISP traffic (2020)

▪ challenge:  scale - how to efficiently get 
content to millions of users?

▪ challenge: heterogeneity
▪ different users have different capabilities (e.g., wired 

versus mobile; high vs low bandwidth)



Idea 1: Content distribution networks (CDNs)

challenge: how to stream content (selected from millions of 
videos) to hundreds of thousands of simultaneous users?

▪ option 1: single, large “mega-
server”
• single point of failure
• point of network congestion
• long (and possibly congested) 

path to distant clients

….quite simply: this solution doesn’t scale



Idea 1: Content distribution networks (CDNs)

challenge: how to stream content (selected from millions of 
videos) to hundreds of thousands of simultaneous users?

• enter deep: push CDN servers deep into many access networks 
• close to users
• Akamai: 240,000 servers deployed 
   in > 120 countries (2015)

▪ option 2: store/serve multiple copies of videos at multiple 
geographically distributed sites (CDN)

• bring home: smaller number (10’s) of larger 
clusters in Internet exchange points (IXPs)

• used by Limelight



Example CDN: Akamai

Source: https://networkingchannel.eu/living-on-the-edge-for-a-quarter-century-an-akamai-retrospective-downloads/



Idea 2: DASH (Dynamic Adaptive Streaming over HTTP)

server:
▪ divides video file into multiple chunks

▪ each chunk encoded at multiple different rates

▪ different rate encodings stored in different files

▪ files replicated in various CDN nodes

▪ manifest file: provides URLs for different chunks client

?

client:
▪ periodically estimates server-to-client bandwidth

▪ consulting manifest, requests one chunk at a time 

• chooses maximum coding rate sustainable given current bandwidth

• can choose different coding rates at different points in time (depending 
on available bandwidth at time), and from different servers

...

...

...



...

...

...

▪“intelligence” at client: client 
determines
• when to request chunk (so that buffer 

starvation, or overflow does not occur)

• what encoding rate to request (higher 
quality when more bandwidth 
available) 

• where to request chunk (can request 
from URL server that is “close” to 
client or has high available 
bandwidth) 

Streaming video = encoding + DASH + playout buffering

client

?

Idea 2: DASH (Dynamic Adaptive Streaming over HTTP)



▪ subscriber requests content, service provider returns manifest

Video streaming example: Netflix
▪ Netflix: stores copies of content (e.g., MADMEN) at its 

(worldwide)  OpenConnect CDN  nodes 

where’s Madmen?

manifest file

• using manifest, client retrieves content at highest supportable rate

• may choose different rate or copy if network path congested



Video streaming example: Netflix
▪ Some interesting design decisions services like Netflix need to 

make:

▪ What content to place in which CDN nodes?

▪ From which CDN node to retrieve content? At which rate?



Video streaming example: Netflix

1

1. Bob manages      

Netflix account

Netflix registration,
accounting servers

Amazon cloud

CDN

server 

2

2. Bob browses

Netflix video
3

3. Manifest file

returned for 

requested video

4. DASH 

streaming

upload copies of 
multiple versions of 
video to CDN servers

CDN

server 

CDN

server 



Examples applications we will discuss

▪ Web applications: client-server

▪ Video streaming: client-server

▪ P2P file distribution: peer-to-peer

▪ E-Mail: client-server



mobile network

home network

enterprise
          network

national or global ISP

local or 
regional ISP

datacenter 
network

content 
provider 
network

Reminder: Peer-to-peer (P2P) architecture

▪ no always-on server
▪ arbitrary end systems directly 

communicate
▪ peers request service from other 

peers, provide service in return to 
other peers
• self scalability – new peers bring new 

service capacity, and new service demands

▪ peers are intermittently connected 
and change network addresses
• complex management

▪ examples: P2P file sharing (BitTorrent)



▪A server distributes one copy of a large file to each of the 𝑁 hosts (peers)
• 𝑢𝑠: upload rate of the server’s access link
• 𝑢𝑖: upload rate of the 𝑖-th peer’s access link
• 𝑑𝑖: download rate of the 𝑖-th peer’s access link

File distribution

us

uN

dN

server

network (with abundant

 bandwidth)

file, size F

us: server upload 
capacity

ui: peer i upload 
capacity

di: peer i download 
capacityu2 d2

u1 d1

di

ui



File distribution: client-server vs P2P

Q: how much time to distribute file (size F) from one server to  
N peers?
• peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant

 bandwidth)

file, size F

us: server upload 
capacity

ui: peer i upload 
capacity

di: peer i download 
capacityu2 d2

u1 d1

di

ui



File distribution time: client-server

▪ server transmission: must sequentially 
send (upload) N file copies:
• No one else “helps” in uploading

• time to send one copy: F/us 

• time to send N copies: NF/us

▪ client: each client must download 
file copy
• dmin = min client download rate
• min client download time: F/dmin 

us

network

di

ui

F

increases linearly in N

time to  distribute F 
to N clients using 

client-server approach 
Dc-s > max{NF/us,,F/dmin} 

Lower bound, but can be achieved
in certain scenarios.



File distribution time: P2P
▪ server transmission: must upload at 

least one copy:
• time to send one copy: F/us 

▪ client: each client must download 
file copy
• min client download time: F/dmin 

us

network

di

ui

F

▪ Server and clients: as a whole, the system must deliver 
(upload) a total of NF bits (F bits to each of the N peers)
• max upload rate is us + ui

time to  distribute F 
to N clients using 

P2P approach 
DP2P > max{F/us,,F/dmin,,NF/(us + ui)} 

… but so does this, as each peer brings service capacity
increases linearly in N …

Lower bound, but 
can be achieved

in certain scenarios.



▪ Consider distributing a file of 𝐹 = 360 Mbits to 20 peers. The server 
has an upload rate of 1 Mbps, and each peer has upload rate of 
100kbps and download rate of 1 Mbps. What is the minimum file 
distribution time for client-server and P2P distributions respectively? 

In-class exercise: file distribution time



Client-server vs. P2P: example

client upload rate = u,  F/u = 1 hour,  us = 10u,  dmin ≥ us

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
u

m
 D

is
tr

ib
u

ti
o

n
 T

im
e P2P

Client-Server



P2P file distribution: BitTorrent 

▪ file divided into 256Kb chunks
▪ peers in torrent send/receive file chunks

tracker: tracks peers 
participating in torrent

torrent: group of peers 
exchanging  chunks of a file

Alice arrives  …
… obtains list
of peers from tracker
… and begins exchanging 
file chunks with peers in torrent



P2P file distribution: BitTorrent 

▪ peer joining torrent: 
• has no chunks, but will accumulate them 

over time from other peers

• registers with tracker to get list of peers, 
connects to subset of peers 
(“neighbors”)

▪ while downloading, peer uploads chunks to other peers

▪ peer may change peers with whom it exchanges chunks

▪ churn: peers may come and go

▪ once peer has entire file, it may (selfishly) leave or (altruistically) remain 
in torrent



BitTorrent: requesting, sending file chunks

Requesting chunks:
▪ at any given time, different 

peers have different 
subsets of file chunks

▪ periodically, Alice asks 
each peer for list of chunks 
that they have

▪ Alice requests missing 
chunks from peers, rarest 
first

Sending chunks: tit-for-tat
▪ Alice sends chunks to those four 

peers currently sending her chunks 
at highest rate 
• other peers are choked by Alice (do 

not receive chunks from her)
• re-evaluate top 4 every10 secs

▪ every 30 secs: randomly select 
another peer, starts sending 
chunks
• “optimistically unchoke” this peer
• newly chosen peer may join top 4



BitTorrent: tit-for-tat
(1) Alice “optimistically unchokes” Bob

(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better trading 
partners, get file faster !



Examples applications we will discuss

▪ Web applications: client-server

▪ Video streaming: client-server

▪ P2P file distribution: peer-to-peer

▪ E-Mail: client-server



Example: E-mail

Three major components: 
▪user agents
▪mail servers
▪ simple mail transfer protocol: SMTP

user mailbox

outgoing 
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent



E-mail: user agents

▪ a.k.a. “mail reader”
▪ composing, editing, reading mail 

messages
▪ e.g., Outlook, iPhone mail client
▪Outgoing and incoming messages stored 

on server
▪Messages can be read/copied on local 

devices through the user agents.

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent



E-mail: mail servers

user mailbox

outgoing 
message queue

mail
server

mail
server

mail
server

▪ Store outgoing and incoming 
messages

▪mailbox contains incoming 
messages for user

▪message queue of outgoing (to be 
sent) mail messages

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent



E-mail: SMTP protocol

user mailbox

outgoing 
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

SMTP protocol between mail 
servers to send email messages
▪ client: sending mail server

▪ “server”: receiving mail server



Mail message format

SMTP: protocol for exchanging e-mail messages, defined in RFC 5321 
(like RFC 7231 defines HTTP)

RFC 2822 defines syntax for e-mail message itself (like HTML defines 
syntax for web documents)

header

body

blank

line

▪ header lines, e.g.,

• To:

• From:

• Subject:

these lines, within the body of the email 
message area different from SMTP MAIL FROM:, 
RCPT TO: commands!

▪ Body: the “message” , ASCII characters only



Retrieving email: mail access protocols

sender’s e-mail 
server

SMTP SMTP

receiver’s e-mail 
server

e-mail access
protocol

(e.g., IMAP, 
HTTP)

user

agent

user

agent

▪ SMTP: delivery/storage of e-mail messages to receiver’s server

▪mail access protocol: retrieval from server
• IMAP: Internet Mail Access Protocol [RFC 3501]: messages stored on server, IMAP 

provides functions like retrieval and deletion of folders of stored messages on server

▪ HTTP: gmail, Hotmail, Yahoo!Mail, etc. provides web-based interface on 
top of STMP (to send), IMAP (or POP) to retrieve e-mail messages



Examples applications we have discussed!

▪ Web applications: client-server

▪ Video streaming: client-server

▪ P2P file distribution: peer-to-peer

▪ E-Mail: client-server



Application Layer: Summary

▪ application architectures
• client-server

• P2P

▪ application service requirements:
• reliability, bandwidth, delay

▪ Internet transport service model
• connection-oriented, reliable: TCP

• unreliable, datagrams: UDP

our study of network application layer is now complete!

▪ specific protocols:
• HTTP
• P2P: BitTorrent
• SMTP, IMAP

▪ video streaming, CDNs
▪ socket programming: 
    TCP, UDP sockets



Application Layer: Summary
Most importantly: learned about protocols!

▪ typical request/reply message 
exchange:
• client requests info or service

• server responds with data, status code

▪ message formats:
• headers: fields giving info about data

• data: info(payload)  being 
communicated

important themes: 
▪ centralized vs. decentralized 
▪ stateless vs. stateful
▪ scalability
▪ reliable vs. unreliable 

message transfer 
▪ “complexity at network 

edge”


	Slide 1: CS 456/656 Computer Networks
	Slide 2: A note on slides
	Slide 3: Examples applications we will discuss
	Slide 4: Communicating with the transport layer
	Slide 5: Communicating with the transport layer
	Slide 6: Communicating with the transport layer
	Slide 7: Communication endpoints are processes
	Slide 8: Addressing processes
	Slide 9: Addressing processes
	Slide 10: Communicating with the transport layer
	Slide 11: Sockets
	Slide 12: Socket programming 
	Slide 13: Socket programming 
	Slide 14: Socket programming with UDP 
	Slide 15: Client/server socket interaction: UDP
	Slide 16: Example app: UDP client
	Slide 17: Example app: UDP server
	Slide 18: Socket programming with TCP
	Slide 19: Client/server socket interaction: TCP
	Slide 20: Example app: TCP client
	Slide 21: Example app: TCP server
	Slide 22: Communicating with the transport layer
	Slide 23: Examples applications we will discuss
	Slide 24: Example: Video Streaming
	Slide 25: Example: Video Streaming
	Slide 26: Streaming stored video
	Slide 27: Streaming stored video
	Slide 28: Streaming stored video: challenges
	Slide 29: Streaming stored video: playout buffering
	Slide 30: Video streaming in practice
	Slide 31: Idea 1: Content distribution networks (CDNs)
	Slide 32: Idea 1: Content distribution networks (CDNs)
	Slide 33: Example CDN: Akamai
	Slide 34: Idea 2: DASH (Dynamic Adaptive Streaming over HTTP)
	Slide 35: Idea 2: DASH (Dynamic Adaptive Streaming over HTTP)
	Slide 36: Video streaming example: Netflix
	Slide 37: Video streaming example: Netflix
	Slide 38: Video streaming example: Netflix
	Slide 39: Examples applications we will discuss
	Slide 40: Reminder: Peer-to-peer (P2P) architecture
	Slide 41: File distribution
	Slide 42: File distribution: client-server vs P2P
	Slide 43: File distribution time: client-server
	Slide 44: File distribution time: P2P
	Slide 45: In-class exercise: file distribution time
	Slide 47: Client-server vs. P2P: example
	Slide 48: P2P file distribution: BitTorrent 
	Slide 49: P2P file distribution: BitTorrent 
	Slide 50: BitTorrent: requesting, sending file chunks
	Slide 51: BitTorrent: tit-for-tat
	Slide 52: Examples applications we will discuss
	Slide 53: Example: E-mail
	Slide 54: E-mail: user agents
	Slide 55: E-mail: mail servers
	Slide 56: E-mail: SMTP protocol
	Slide 57: Mail message format
	Slide 58: Retrieving email: mail access protocols
	Slide 59: Examples applications we have discussed!
	Slide 60: Application Layer: Summary
	Slide 61: Application Layer: Summary

