
CS 456/656
Computer Networks

Mina Tahmasbi Arashloo and Bo Sun

Fall 2024

Lecture 7: Transport Layer – Part 3

A note on the slides

Adapted from the slides that
accompany this book.

Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

All material copyright 1996-2023
J.F Kurose and K.W. Ross, All Rights Reserved

Transport layer: roadmap
▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• connection management

• reliable data transfer

• flow control

▪ Principles of congestion control

▪ TCP congestion control

TCP: a widely-used reliable transport protocol

▪ Guarantees reliable, in-order byte steam:
• no “message boundaries”

Process 1

application

TCP

Process 2

application

TCP

Send these 2
bytes for me

TCP: a widely-used reliable transport protocol

▪ Guarantees reliable, in-order byte steam:
• no “message boundaries”

application

TCP

application

TCP

Send these 2
bytes for me

Process 1 Process 2

TCP: a widely-used reliable transport protocol

▪ Guarantees reliable, in-order byte steam:
• no “message boundaries”

application

TCP

application

TCP

Send these 4
bytes for me

Process 1 Process 2

TCP: a widely-used reliable transport protocol

▪ Guarantees reliable, in-order byte steam:
• no “message boundaries”

application

TCP

application

TCP

Send these 4
bytes for me

Process 1 Process 2

TCP: a widely-used reliable transport protocol

▪ Guarantees reliable, in-order byte steam:
• no “message boundaries”

application

TCP

application

TCP

I’ll fit them into 2 packets,
each with 3 bytes of the data

Process 1 Process 2

TCP: a widely-used reliable transport protocol

▪ Guarantees reliable, in-order byte steam:
• no “message boundaries”

application

TCP

application

TCP

I’ll put these 6 bytes back
together into a stream and
send acks back

acks

Process 1 Process 2

TCP: a widely-used reliable transport protocol

▪ Guarantees reliable, in-order byte steam:
• no “message boundaries”

application

TCP

application

TCP

Give me the
next 4 bytes

Process 1 Process 2

TCP: a widely-used reliable transport protocol

▪ Guarantees reliable, in-order byte steam:
• no “message boundaries”

▪ full duplex data: Possible to send data both ways once the two
processes establish a connection

application

TCP

application

TCP

Process 1 Process 2

Data from process 1 to 2

Data from process 2 to 1

TCP: a widely-used reliable transport protocol

▪ Guarantees reliable, in-order byte steam:
▪ no “message boundaries”

▪ full duplex data:
▪ Possible to send data both ways once the two processes establish a connection

▪ Uses the pipelining approach to reliable data transfer
▪ A combination of techniques from Go-Back-N (cumulative acks) and Selective

Repeat (only retransmitting presumably lost segment)
▪ Performance optimizations like fast retransmit and delayed acks.

TCP: a widely-used reliable transport protocol

▪ Connection-oriented
▪ Connection establishment: Control messages prior to data exchange to initialize

the proper state in the communication endpoints

▪ Connection tear-down: Control messages after data exchange to end connection

▪ Flow controlled
▪ sender will not overwhelm receiver

Transport layer: roadmap
▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control

TCP segment structure

source port # dest port #

32 bits

not
used receive window flow control: # bytes

receiver willing to accept

sequence number

segment seq #: counting

bytes of data into bytestream
(not segments!)

application

data

(variable length)

data sent by
application into
TCP socket

A

acknowledgement number

ACK: seq # of next expected
byte; A bit: this is an ACK

options (variable length)

TCP options

head
lenlength (of TCP header)

checksumInternet checksum

RST, SYN, FIN: connection
management

FSR

Urg data pointer

PUC E

C, E: congestion notification

Transport layer: roadmap
▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control

▪ Checksum

▪ Sequence number

▪ Receiver feedback (ACK)

▪ Timer

▪ Sliding window/pipelining

TCP reliable data transfer

TCP uses all the reliable data transfer tools we have discussed!

TCP sequence numbers – one for every byte

▪ The interface between a sending process and TCP is a byte stream.

▪ TCP assigns a sequence number to every byte
• As opposed to every segment, as we discussed in the last lecture

▪ It keeps track of the “status” of every byte
• Is it sent yet? Is it acknowledged yet?

Sender’s view of sequence number space

First byte has sequence
number init_seq (initial
sequence number)

Next byte has sequence
number init_seq + 1

The Nth byte has sequence
number init_seq + N - 1

(Colors represent segment status -- see next slide)

TCP sequence numbers

sent &
ACKed

sent, not-yet
ACKed

(“in-flight”)

usable
but not
yet sent

not
Usable not data associated
with it, application hasn’t sent
any data beyond this point)

window size
 N

Sender’s view of sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

TCP ACKs

Q: What about out-of-order segments?

• A: TCP spec doesn’t specify, - up to implementor

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from receiver

A

Receiver’s view of the sequence number space

Received out of order
(optional to track)

Grey ones are not
received

Sequence number
= init_seq received

▪ Cumulative ACK
• Has seq number of next expected in-order

byte

▪ ACK(n) means:
• All bytes in [init_seq, n – 1] are received.

• The receiver is expecting byte n next

▪ Note the difference from Go-Back-N ack

TCP sequence numbers, ACKs

host ACKs receipt
of echoed ‘C’

host ACKs receipt
of‘C’, echoes back ‘C’

simple telnet scenario

Host BHost A

User types‘C’
Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

TCP sequence numbers, ACKs

host ACKs receipt
of echoed ‘C’

host ACKs receipt
of‘C’, echoes back ‘C’

simple telnet scenario

Host BHost A

User types‘C’
Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80
• Note the bi-directional

communication!
• There are two data streams:

• one in each direction
• each with its own sequence

number space

TCP Sender (simplified)

event: data received from
application

▪ create segment with seq #

▪ seq # is byte-stream offset of
first data byte in segment

▪ start timer if not already running
• think of timer as for oldest

unACKed segment

• expiration interval:
TimeOutInterval

event: timeout
▪ retransmit segment that

caused timeout
▪ restart timer

event: ACK received

▪ if ACK acknowledges
previously unACKed segments
• update what is known to be

ACKed

• restart timer if there are still
unACKed segments

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

Seq=92, 8 bytes of data

ACK=100

X

ACK=100

ti
m

e
o
u
t

premature timeout

Host BHost A

Seq=92, 8
bytes of data

ACK=120

ti
m

e
o
u
t

ACK=100

ACK=120

SND.UNA=100

SND.UNA=120

SND.UNA=120

Seq=92, 8 bytes of data

Seq=100, 20 bytes of data

SND.UNA=92

send cumulative
ACK for 120

SND.UNA=92

SND.UNA=100

First Sent but unacknowledged sequence number
The sequence number at the beginning of the window

TCP: retransmission scenarios

cumulative ACK covers
for earlier lost ACK

Host BHost A

Seq=92, 8 bytes of data

Seq=120, 15 bytes of data

Seq=100, 20 bytes of data

X
ACK=100

ACK=120

TCP: retransmission scenarios

cumulative ACK covers
for earlier lost ACK

Host BHost A

Seq=92, 8 bytes of data

Seq=120, 15 bytes of data

Seq=100, 20 bytes of data

X
ACK=100

ACK=120
• (short) in class exercise:

• What is the value of SND.UNA after
sending and receiving each packet?

TCP: retransmission scenarios

cumulative ACK covers
for earlier lost ACK

Host BHost A

Seq=92, 8 bytes of data

Seq=120, 15 bytes of data

Seq=100, 20 bytes of data

X
ACK=100

ACK=120
• Q: How is TCP similar to Go-Back-N? How is

it different? How about Selective Repeat?

Knowledge Check

▪Make sure you understand and can complete a TCP send and
receive timeline.

▪ This includes, but is not limited to
• sequence and acknowledgement numbers on packets going back and forth

• how the sender and receiver view of the sequence number space changes
as a result of packets being sent and received (e.g., status of the bytes,
position of the sliding window, etc.)

TCP round trip time, timeout

Q: how to set TCP timeout
value?

▪ longer than RTT, but RTT varies!

▪ too short: premature timeout,
unnecessary retransmissions

▪ too long: slow reaction to
segment loss

Q: how to estimate RTT?
▪SampleRTT:measured time

from segment transmission until
ACK receipt
• ignore retransmissions

▪SampleRTT will vary, want
estimated RTT “smoother”

• average several recent
measurements, not just current
SampleRTT

TCP round trip time, timeout
EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

▪ exponential weighted moving average (EWMA)

▪ influence of past sample decreases exponentially fast

▪ typical value: = 0.125
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)

TCP round trip time, timeout

▪ timeout interval: EstimatedRTT plus “safety margin”

• large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically, = 0.25)

▪DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

▪ So far, we have covered “the basics” of TCP’s rdt
• Sequence number

• Cumulative ACKs

• Pipelined segments

• Retransmission timer

▪Next, we will discuss some optimizations

Performance optimizations for TCP

Optimization 1: Fast Retransmit
Host BHost A

ti
m

e
o
u
t

X

Seq=100, 20 bytes of data

Receipt of three duplicate ACKs
indicates 3 segments received
after a missing segment – lost

segment is likely. So retransmit!

if sender receives 3 additional
ACKs for same data (“triple
duplicate ACKs”), resend unACKed
segment with smallest seq #
▪ likely that unACKed segment lost,

so don’t wait for timeout

TCP fast retransmit

Optimization 2: Delayed ACKs

• Instead of generating an ACK in response to every segment
the moment it arrives
• Wait for some time to see if there is another segment right

afterwards

• Create one ACK for both.

• Benefits?
• Saves bandwidth

• Disadvantages?
• Increases delay in responding to the sender.

Optimizations 2: Delays ACKs (cont.)

Event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Transport layer: roadmap
▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control

TCP flow control

sending
process

data

receiving
process

dataapplication

transport

unreliable channel
network

transport

TCP
send buffer

TCP
receive buffer

• The send buffer holds the data
the application sends to TCP
until it is delivered

• The receive buffer holds the
data TCP receives from the
network until it is delivered to
the application

TCP flow control

sending
process

data

receiving
process

dataapplication

transport

unreliable channel
network

transport

TCP
send buffer

TCP
receive buffer

application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers

Q: What happens if network layer delivers
data faster than application layer removes
data from socket buffers?

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

from sender

Application removing
data from TCP socket

buffers

receive window flow control: # bytes
receiver willing to accept

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

receiver controls sender, so
sender won’t overflow
receiver’s buffer by
transmitting too much, too fast

flow control

from sender

Application removing
data from TCP socket

buffers

TCP flow control

▪ TCP receiver “advertises” free buffer
space in rwnd field in TCP header

• RcvBuffer size set via socket
options

• many operating systems auto-adjust
RcvBuffer

▪ sender limits amount of unACKed
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not
overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering

TCP flow control

▪ TCP receiver “advertises” free buffer
space in rwnd field in TCP header

• RcvBuffer size set via socket
options

• many operating systems auto-adjust
RcvBuffer

▪ sender limits amount of unACKed
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not
overflow

flow control: # bytes receiver willing to accept

receive window

TCP segment format

Transport layer: roadmap
▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control

TCP connection management
before exchanging data, sender/receiver “handshake”:
▪ agree to establish connection (each knowing the other willing to establish connection)
▪ agree on connection parameters (e.g., starting seq #s)

connection state: ESTAB
connection variables:

seq # client-to-server
 server-to-client
rcvBuffer size

 at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
 server-to-client
rcvBuffer size

 at server,client

application

network

Socket clientSocket =

 newSocket("hostname","port number");

Socket connectionSocket =

welcomeSocket.accept();

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state

LISTEN

Server state

LISTEN

clientSocket = socket(AF_INET, SOCK_STREAM)

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

connectionSocket, addr = serverSocket.accept()

clientSocket.connect((serverName,serverPort))

Pay close attention to sequence and
ack numbers during handshake

A human 3-way handshake protocol

1. On belay?

2. Belay on.
3. Climbing.

Closing a TCP connection

▪ client, server each close their side of connection
• send TCP segment with FIN bit = 1

▪ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

▪ simultaneous FIN exchanges can be handled

Knowledge Check

▪Make sure you understand and can complete a TCP connection
timeline
• From connection establishment, through reliable data transfer (with

optimizations and flow control), to connection tear-down

▪ This includes, but is not limited to
• sequence and acknowledgement numbers on packets going back and forth

• how the sender and receiver view of the sequence number space changes
as a result of packets being sent and received (e.g., status of the bytes,
position of the sliding window, etc.)

Additional Slides

Agreeing to establish a connection

Q: will 2-way handshake always
work in network?

▪ variable delays

▪ retransmitted messages (e.g.
req_conn(x)) due to message loss

▪ message reordering

▪ can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)

2-way handshake scenarios

x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

ACK(x+1)

No problem!

2-way handshake scenarios

ESTAB

retransmit
req_conn(x)

req_conn(x)

client
terminates

server
forgets x

connection
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

acc_conn(x)
Problem: half open
connection! (no client)

2-way handshake scenarios

client
terminates

ESTAB

choose x
req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

Problem: dup data
accepted!

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

retransmit
req_conn(x)

ESTAB

req_conn(x)

	Slide 1: CS 456/656 Computer Networks
	Slide 2: A note on the slides
	Slide 3: Transport layer: roadmap
	Slide 4: TCP: a widely-used reliable transport protocol
	Slide 5: TCP: a widely-used reliable transport protocol
	Slide 6: TCP: a widely-used reliable transport protocol
	Slide 7: TCP: a widely-used reliable transport protocol
	Slide 8: TCP: a widely-used reliable transport protocol
	Slide 9: TCP: a widely-used reliable transport protocol
	Slide 10: TCP: a widely-used reliable transport protocol
	Slide 11: TCP: a widely-used reliable transport protocol
	Slide 12: TCP: a widely-used reliable transport protocol
	Slide 13: TCP: a widely-used reliable transport protocol
	Slide 14: Transport layer: roadmap
	Slide 15: TCP segment structure
	Slide 16: Transport layer: roadmap
	Slide 17: TCP reliable data transfer
	Slide 18: TCP sequence numbers – one for every byte
	Slide 19: TCP sequence numbers
	Slide 20: TCP ACKs
	Slide 22: TCP sequence numbers, ACKs
	Slide 23: TCP sequence numbers, ACKs
	Slide 24: TCP Sender (simplified)
	Slide 25: TCP: retransmission scenarios
	Slide 26: TCP: retransmission scenarios
	Slide 27: TCP: retransmission scenarios
	Slide 28: TCP: retransmission scenarios
	Slide 29: Knowledge Check
	Slide 30: TCP round trip time, timeout
	Slide 31: TCP round trip time, timeout
	Slide 32: TCP round trip time, timeout
	Slide 33: Performance optimizations for TCP
	Slide 34: Optimization 1: Fast Retransmit
	Slide 35: Optimization 2: Delayed ACKs
	Slide 37: Optimizations 2: Delays ACKs (cont.)
	Slide 38: Transport layer: roadmap
	Slide 39: TCP flow control
	Slide 40: TCP flow control
	Slide 41: TCP flow control
	Slide 42: TCP flow control
	Slide 43: TCP flow control
	Slide 44: TCP flow control
	Slide 45: TCP flow control
	Slide 46: Transport layer: roadmap
	Slide 47: TCP connection management
	Slide 48: TCP 3-way handshake
	Slide 49: A human 3-way handshake protocol
	Slide 50: Closing a TCP connection
	Slide 51: Knowledge Check
	Slide 52: Additional Slides
	Slide 53: Agreeing to establish a connection
	Slide 54: 2-way handshake scenarios
	Slide 55: 2-way handshake scenarios
	Slide 56: 2-way handshake scenarios

