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Thanks for filling out the survey!

= |f you have not, there is still time
= We'll discuss the results and potential upcoming changes soon



Network layer: roadmap

= Network layer overview

= Routing algorithms
e Link state
* Distance vector

= Network layer in the Internet




Distance vector routing algorithms

» Suppose node node x has n neighbors, v, vy, ..., Uy,

" The least-cost path from node x to node y will pass one of x’s
neighbors.

¥,




Distance vector routing algorithms

" To find its least-cost path to y, x doesn’t necessarily need to build
the entire network graph.

" |t only need to know
* D, (y) : the distance from v; to y

* Cyyp, : the cost of the direct link from x to v;
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Distance vector algorithm

Based on Bellman-Ford (BF) equation (dynamic programming):

Bellman-Ford equation

Let D,(y): cost of least-cost path from x to y.
Then:

D,(y) = min, { C,, + D|v(y) }

V’'s estimated least-cost-path cost to y

min taken over all neighbors v of x direct cost of link from x to v



Bellman-Ford example

Suppose that u’s neighboring nodes, x,v,w, know that for destination c:

D,(c)=6 Du(c) =4 Bellman-Ford equation says:

‘:mln{c + D, (C),

+(C)}
—mln{2+6,
1+4

5+4]@

node achieving minimum (node x)
is next hop on estimated least-
cost path to destination (node c)




Distance vector algorithm

key idea:

= from time-to-time, each node sends its own distance vector estimate
to neighbors

= when x receives new DV estimate from any neighbor, it updates its
own DV using B-F equation:

D (y) < minfc, ,+ D (y)} foreachnodey e N

= under minor, natural conditions, the estimate D (y) converge to the
actual least cost d,(y)



Distance vector algorithm:

each node: iterative, asynchronous: each local
1 iteration caused by:
wait for (change in local link " local link cost change
cost or msg from neighbor) * DV update message from neighbor

|

recompute DV estimates using
DV received from neighbor

distributed, self-stopping: each
node notifies neighbors only when
its DV changes

l " neighbors then notify their
if DV to any destination has neighbors — only if necessary
changed, notify neighbors = no notification received, no

‘ actions taken!




Distance vector example: iteration

We will walk through an example of distance vector routing

For simplicity, we are not adding the end-host (orange) nodes to the
example

They do not participate in routing

But, the routers will include the distance to them in their advertised
distance vectors.



Distance vector example: iteration

D

t=0

= All nodes have
distance estimates
to nearest
neighbors (only)

= All nodes send
their local
distance vector to
their neighbors

D,(a)=0
D,(b) = 8
D,(c) = oo
Da(d) =1
D,(e) =
Da(f) =00
Da(g) =00
Da(h) =00
Da(i) =00
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A few asymmetries:
missing link
larger cost



Distance vector example: iteration

{Z} . =
1

t=1
1 1

All nodes:

" receive distance

vectors from ! | $

neighbors Cdoe 2 e E 2§
1 ' T 1
1 1 1
$ $ $
= ===



Distance vector example: iteration

{:Z} compute o compute ) compute

t=1

1 1
All nodes:
: compute compute compute
= compute their new P 1 z 1
local distance
vector
1 1 1

compute 1 compute 1 compute



Distance vector example: iteration

{Z} 3= = G == o
t=1 ¥ ¥
All nodes: - %

GD—= = G = = >

$ $ $
= send their new 1 1 1
local distance 1+ 1 1
vector to neighbors

CgF—==Cho>—>—Ci3




Distance vector example: iteration

{E} . =
1

t=2
1 1

All nodes:

" receive distance

vectors from ! | $

neighbors Cdoe 2 e E 2§
1 ' T 1
1 1 1
$ $ $
= ===



Distance vector example: iteration

(D

t=2

All nodes:

= compute their new
local distance
vector

compute

compute

compute

compute

compute

compute

compute

compute

compute



Distance vector example: iteration

{E} 3= = G == o
t=2 ¥ ¥
All nodes: - %

GD—= = G = = >

$ $ $
= send their new 1 1 1
local distance 1+ 1 1
vector to neighbors

CgF—==Cho>—>—Ci3




Distance vector example: iteration

....and so on

Let’s next take a look at the iterative computations at nodes

* Check out the online interactive
exercises for more examples:
http://gaia.cs.umass.edu/kurose_ross/interactive/



Distance vector example: iteration

.... and so on
Let’s next take a look at the iterative computations at nodes

Let’s look at the computation at node b att=1
Remember, b’s neighbors have sent b their DV record versionatt=0

* Check out the online interactive
exercises for more examples:
http://gaia.cs.umass.edu/kurose_ross/interactive/



Distance vector example: «

D

t=1

= b receives DVs

froma, c, e

D,(a)=0
D,(b) =8
D,(c) ==
Da(d) =1
D.(e) =
Da(f) =00
Da(g) =00
Da(h) =00
Da(i) = oo

\

D.(b) =1
D.(c)=0
Dc(d) =00
D (e) = oo

C

C

D (g) = o°
D (h) =0

C

D.(a) =0

D.(b)=1
D.(d)=1
D.(e)=0
D.(f) =1

De(g) =00
D.(h)=1
D (i) = o=

e




Distance vector example: «

D,(a)=0
D,(b) =8
D.(c) = oo a =

D,(d)=1 8
D,(e) =
Da(f) =00
Da(g) =00
Da(h) =00
Da(i) =00

D

t=1

b receives DVs
froma, ¢, e,
computes:

co m—BL;té

1

1

Dy(a) = min{c, ,+D,(a), ¢, . +D.(a), ¢, .+D.(a)} = min{8,e0,00} = 8

Dy(c) = min{c, ,+D,(c), ¢, .+D.(c), €}, o +Dc(c)} = min{eo,1,00} =1
Dy(d) = min{c, ,+D,(d), ¢, . +D.(d), ¢}, . +D(d)} = min{9,ee,2} =2

D,(e) = min{c, ,+D,(e), ¢, . +D.(e), c,, . +D.(e)} = min{eo,e0,1} =

Dy(f) = min{c, ,+D,(f), ¢,  +D(f), Cp o +D.(f)} = min{eo,00,2} =2

1

Dy(g) = min{c, ,+D,(g), Cpc +D(8), Cpc+D.(g)} = min{eo, oo, oo} = oo
Dy(h) = min{c, ,+D,(h), ¢, .+D (h), ¢, .#D(h)} =min{eo, 0, 2} =2

Dy (i) = min{c, ,+D,(i), ¢,  +D_(i), €}, ¢+Dg(i)} = min{eo, o0, o} = o

Dy(a) =8 D,(f) =0
Dp(c) =1 Dy(g)=e°
Db(d) = oo Db(h) = oo
Dy(e)=1 D,(i)=o°
-
C
1

D.(b) =1
D.(c)=0
DC(d) =00
D (e) = oo

D (f) = o0

D (g) = o°
D (h) = o

C




Distance vector example: iteration

Now, let’s look at the computation at nodecatt=1
Remember, ¢’s neighbors have sent c their DV record version att=0

* Check out the online interactive
exercises for more examples:
http://gaia.cs.umass.edu/kurose_ross/interactive/



D

t=1

= creceives DVs

from b

Dy(a) =8 D,(f) =0
Dy(c)=1 Dy(g) =
Dy(d) = e Dy(h) =
Dy(e)=1 D,(i)=o°
-
SERE A=
1
Cer—F7FEfI
1 1
Ch> <io

D.(b) =1
D.(c)=0
Dc(d) =00
D (e) = oo

D (f) = o

DZ(g) = oo
D (h) = o
D (i) = oo

C




Distance vector example: «

D

t=1

= creceives DVs
from b computes:

D (a) = min{c_,+Dy(a}}=1+8=9
D (b) = min{c.,+Dy(b)}=1+0=1
D.(d) = min{c. ,+D,(d)} = 1+ eo = oo
D.(e) = min{c_,+Dy(e)}=1+1=2
D.(f) = min{c. ,+Dy(f)} = 1+ o = oo
D (g) = min{c. ,+D,(g)} = 1+ oo = o0

B2

D (h) = min{c, ,#Dy(h)} = 1+ o0 = oo

D.(i) = min{c_,+Dy (i)} = 1+ oo = o0

Db(a) =8 Db(f) = oo

Dy(c) =1 Dy(g) ==

Dy(d) == Dy(h) =

Db(E) =1 Db(l) = oo
=

1 compute

Dc(a) =©°
D,(b) = 1
i(c) =0
D(d) = o0
D () = =

D (f) = oo

Dz(g) = oo
D.(h) = o0
D (i) = oo

C




Distance vector example: iteration

Now, let’s look at the computation at nodeeatt=1
Remember, e’s neighbors have sent e their DV record version att=0

* Check out the online interactive
exercises for more examples:
http://gaia.cs.umass.edu/kurose_ross/interactive/



Distance vector example:

D

t=1

= e receives DVs
fromb, d, f h

D(a)=1
D(b) = o0
Dc(c) = oo
D.(d)=0
D.(e)=1
D(f) = oo
Dc(g) =1
D(h) = e
Dc(l) =00

Dy(a) = o0
Dy(b) = e
Dy(c) = oo
Dy(d) = o=
D,(e)=1
Dy(f) = o=
D,(g)=1
D,(h)=0
D, (i)=1

cad

<d2

8 E%’ 1 Se3

Q: what is new DV computed in e at

t=17?
‘!
=)
compute 1 E fB
A
1 1




Distance vector: state information diffusion

Iterative communication, computation steps diffuses information through network:

(D) =0

c’s state at t=0 is at c only

c’s state at t=0 has propagated to b, and
may influence distance vector computations

up to 1 hop away, i.e., atb

c’s state at t=0 may now influence distance

vector computations up to 2 hops away, i.e.,
at b and now at a, e as well

c’s state at t=0 may influence distance vector
computations up to 3 hops away, i.e., atd, f, h

c’s state at t=0 may influence distance vector
computations up to 4 hops away, i.e., at g, i

Sa "‘"@ 2 &=L




Distance vector is asynchronous

" The example we discussed was simplified...

= We assumed there is a synchronized clock between all routers
* Syncing the message transfers and computation.

" |n reality, the routers are not all synchronized with each other



Distance vector: link cost changes

link cost changes: !

" node detects local link cost change gx }@1
= updates routing info, recalculates local DV -

" if DV changes, notify neighbors

t,: y detects link-cost change, updates its DV, informs its neighbors.

“good news ¢, : z receives update from y, updates its DV, computes new least cost
travels fast to x, sends its neighbors its DV.

t,:y receives z’s update, updates its DV. y’s least costs do not
change, so y does not send a message to z.



Distance vector: link cost changes
60

link cost changes:
. ;%1
" node detects local link cost change <
= “bad news travels slow” — count-to-infinity 20

problem:
* y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So
y computes “my new cost to x will be 6, via z); notifies z of new cost of 6 to x.

7z learns that path to x via y has new cost 6, so z computes “my new cost to
x will be 7 via y), notifies y of new cost of 7 to x.

* y learns that path to x via z has new cost 7, so y computes “my new cost to
x will be 8 via y), notifies z of new cost of 8 to x.

e zlearns that path to x via y has new cost 8, so z computes “my new cost to
x will be 9 via y), notifies y of new cost of 9 to x.



Distance vector : count-to-infinity problem

link cost changes: 60
- 1
" node detects local link cost change - ?_ j:
" “bad news travels slow” — count-to-infinity problem 30

" |n this specific example, the problem happens
because:

" originally z’s shortest path to x is through y.

" But, y doesn’t know that! It only knows z has a
path of length 5 to x.



Distance vector : count-to-infinity problem

link cost changes: 60
- 1
" node detects local link cost change - ?_ j:
" “bad news travels slow” — count-to-infinity problem 30

" This problem does not only happen between two
neighboring nodes

= See textbook for a solution for the two-node case

" |t can happen with loops involving three or more
nodes.

= Distributed algorithms are tricky!



What you need to know about distance vector
routing algorithms

= How they work, i.e.,
e How routers disseminate information
e How each router builds its table of distance to different destinations

= E.g., given DV tables and messages from neighboring routers, you
should be able to continue executing the algorithm and update DV
tables for subsequent timesteps.

" The count-to-infinity problem
* Whatitis
 Why it happens
* Be able to demonstrate it with an example.



Possible ways to practice more with DV

= Continue the example in the slide for t = 2.

* Be careful to keep track of which node has received which messages at which
time and what is DV looks like.

= Variation: Add an end-host node to the topology and re-do the first
two timesteps for a few routers.

=" What does the forwarding table look like at each stage?



Comparison of LS and DV algorithms

Messages speed of convergence:

LS: Each router’s “Advertisement”,
i.e., link state, will have to be
propagated to all the other
routers.

DV: Several messages exchanged

If you change the costs, how long until
routes are stable again?

LS :

* Converges when
* Messages about the change propagate

between neighbors until we  Dijkstra’s algorithm for least-cost path
converge to the least cost paths; computation has to run
convergence time varies DV:

* may have routing loops
e count-to-infinity problem



Comparison of LS and DV algorithms

robustness: what happens if router malfunctions, or is compromised?

LS:
* router can advertise incorrect link cost
e each router computes only its own table based on the topology

DV:

e DV router can advertise incorrect path cost (“I have a really low-cost path to
everywhere”): black-holing

e each router’s DV is based on DV of other routers
* No full picture of the network

* Harder to detect such problems locally
* Errors propagate (easier) through the network.



What you need to know about routing algorithms so
far

" Link State (LS) algorithms and how they work
= Distance Vector (DV) algorithms and how they work
=" How LS and DV are different from each other.
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