
CS 456/656
Computer Networks

Mina Tahmasbi Arashloo and Bo Sun

Fall 2024

Lecture 10: Network Layer – Part 2

A note on the slides

Adapted from the slides that
accompany this book.

Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

All material copyright 1996-2023
J.F Kurose and K.W. Ross, All Rights Reserved

▪ If you have not, there is still time

▪ We’ll discuss the results and potential upcoming changes soon

Thanks for filling out the survey!

Network layer: roadmap

▪ Network layer overview

▪ Routing algorithms
• Link state

• Distance vector

▪ Network layer in the Internet

Distance vector routing algorithms

▪ Suppose node node 𝑥 has 𝑛 neighbors, 𝑣1, 𝑣2, … , 𝑣𝑛
▪ The least-cost path from node 𝑥 to node 𝑦 will pass one of 𝑥’s

neighbors.

x

𝑣1

𝑣2

𝑣𝑛

…

y

Distance vector routing algorithms

▪ To find its least-cost path to 𝑦, 𝑥 doesn’t necessarily need to build
the entire network graph.

▪ It only need to know
• 𝐷𝑣𝑖 𝑦 : the distance from 𝑣𝑖 to 𝑦

• 𝑐𝑥,𝑣𝑖 : the cost of the direct link from 𝑥 to 𝑣𝑖

x

𝑣1

𝑣2

𝑣𝑛

…

y
𝑐𝑥,𝑣1

Based on Bellman-Ford (BF) equation (dynamic programming):

Distance vector algorithm

Let Dx(y): cost of least-cost path from x to y.

Then:

 Dx(y) = minv { cx,v + Dv(y) }

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v

Bellman-Ford example

u

y

z

2

2

1
3

1

1

2

5
3

5

Suppose that u’s neighboring nodes, x,v,w, know that for destination c:

Du(c) = min { cu,v + Dv(c),

 cu,x + Dx(c),

 cu,w + Dw(c) }

Bellman-Ford equation says:Dv(c) = 6

v

Dw(c) = 4

w

Dx(c) = 4

x
= min {2 + 6,

 1 + 4,

 5 + 4} = 5

node achieving minimum (node x)
is next hop on estimated least-
cost path to destination (node c)

a

1

1
b

1

c

Distance vector algorithm

key idea:
▪ from time-to-time, each node sends its own distance vector estimate

to neighbors

▪ under minor, natural conditions, the estimate Dx(y) converge to the
actual least cost dx(y)

Dx(y) ← minv{cx,v + Dv(y)} for each node y ∊ N

▪ when x receives new DV estimate from any neighbor, it updates its
own DV using B-F equation:

Distance vector algorithm:

iterative, asynchronous: each local
iteration caused by:

▪ local link cost change

▪ DV update message from neighbor
wait for (change in local link
cost or msg from neighbor)

each node:

distributed, self-stopping: each
node notifies neighbors only when
its DV changes

▪ neighbors then notify their
neighbors – only if necessary

▪ no notification received, no
actions taken!

recompute DV estimates using
DV received from neighbor

if DV to any destination has
changed, notify neighbors

Distance vector example: iteration

▪ We will walk through an example of distance vector routing

▪ For simplicity, we are not adding the end-host (orange) nodes to the
example

▪ They do not participate in routing

▪ But, the routers will include the distance to them in their advertised
distance vectors.

DV in a:
Da(a)=0

Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

t=0

▪ All nodes have
distance estimates
to nearest
neighbors (only)

A few asymmetries:
▪ missing link
▪ larger cost

d e f

a b c

▪ All nodes send
their local
distance vector to
their neighbors

Distance vector example: iteration

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=1

compute compute compute

compute compute compute

compute compute compute

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=1

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=2

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

8 1

2 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=2

compute compute compute

compute compute compute

compute compute compute

Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance

vectors from
neighbors

▪ compute their new
local distance
vector

▪ send their new
local distance
vector to neighbors

t=2

Distance vector example: iteration

…. and so on

Let’s next take a look at the iterative computations at nodes

* Check out the online interactive

exercises for more examples:

http://gaia.cs.umass.edu/kurose_ross/interactive/

Distance vector example: iteration

…. and so on

Let’s next take a look at the iterative computations at nodes

Let’s look at the computation at node b at t = 1
Remember, b’s neighbors have sent b their DV record version at t = 0

* Check out the online interactive

exercises for more examples:

http://gaia.cs.umass.edu/kurose_ross/interactive/

DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ b receives DVs
from a, c, e

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Distance vector example: computation
DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1
▪ b receives DVs

from a, c, e,
computes:

a b c

d e f

DV in b:

Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)} = min{8,∞,∞} = 8

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)} = min{∞,1,∞} = 1

Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)} = min{9,∞,2} = 2

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)} = min{∞,∞,2} = 2

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)} = min{∞, ∞, ∞} = ∞

Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)} = min{∞, ∞, 2} = 2

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)} = min{∞,∞,1} = 1

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)} = min{∞, ∞, ∞} = ∞

Distance vector example: iteration

Now, let’s look at the computation at node c at t = 1
Remember, c’s neighbors have sent c their DV record version at t = 0

* Check out the online interactive

exercises for more examples:

http://gaia.cs.umass.edu/kurose_ross/interactive/

Distance vector example: computation

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs
from b

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

Distance vector example: computation

g h i

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs
from b computes:

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9

Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1

Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞

Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2

Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞

Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞

Dc(h) = min{cbc,b+Db(h)} = 1+ ∞ = ∞

DV in c:
Dc(a) = 9
Dc(b) = 1
Dc(c) = 0
Dc(d) = 2
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

compute

Distance vector example: iteration

Now, let’s look at the computation at node e at t = 1
Remember, e’s neighbors have sent e their DV record version at t = 0

* Check out the online interactive

exercises for more examples:

http://gaia.cs.umass.edu/kurose_ross/interactive/

Distance vector example:

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ e receives DVs
from b, d, f, h

a b c

DV in f:
Df(a) = ∞
Df(b) = ∞
Df(c) = ∞
Df(d) = ∞
Df(e) = 1
Df(f) = 0
Df(g) = ∞
Df(h) = ∞
Df(i) = 1

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

DV in h:
Dh(a) = ∞
Dh(b) = ∞
Dh(c) = ∞
Dh(d) = ∞
Dh(e) = 1
Dh(f) = ∞
Dh(g) = 1
Dh(h) = 0
Dh(i) = 1

DV in d:
Dc(a) = 1
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = 0
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = ∞
Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in e at
t=1?

compute

Distance vector: state information diffusion

t=0 c’s state at t=0 is at c only

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

c’s state at t=0 has propagated to b, and
may influence distance vector computations
up to 1 hop away, i.e., at b

t=1

c’s state at t=0 may now influence distance
vector computations up to 2 hops away, i.e.,
at b and now at a, e as well

t=2

c’s state at t=0 may influence distance vector
computations up to 3 hops away, i.e., at d, f, h

t=3

c’s state at t=0 may influence distance vector
computations up to 4 hops away, i.e., at g, i

t=4

Iterative communication, computation steps diffuses information through network:

t=1

t=2

t=3

t=4

▪ The example we discussed was simplified…

▪We assumed there is a synchronized clock between all routers
• Syncing the message transfers and computation.

▪ In reality, the routers are not all synchronized with each other

Distance vector is asynchronous

Distance vector: link cost changes

“good news
travels fast”

t0 : y detects link-cost change, updates its DV, informs its neighbors.

t1 : z receives update from y, updates its DV, computes new least cost
to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its DV. y’s least costs do not
change, so y does not send a message to z.

link cost changes:
▪ node detects local link cost change

▪ updates routing info, recalculates local DV

▪ if DV changes, notify neighbors

x z

14

50

y
1

Distance vector: link cost changes

link cost changes:
▪ node detects local link cost change

▪ “bad news travels slow” – count-to-infinity
problem:

x z

14

50

y
60

• y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So
y computes “my new cost to x will be 6, via z); notifies z of new cost of 6 to x.

• z learns that path to x via y has new cost 6, so z computes “my new cost to
x will be 7 via y), notifies y of new cost of 7 to x.

• y learns that path to x via z has new cost 7, so y computes “my new cost to
x will be 8 via y), notifies z of new cost of 8 to x.

• z learns that path to x via y has new cost 8, so z computes “my new cost to
x will be 9 via y), notifies y of new cost of 9 to x.
…

Distance vector : count-to-infinity problem

link cost changes:
▪ node detects local link cost change

▪ “bad news travels slow” – count-to-infinity problem

▪ In this specific example, the problem happens
because:

▪ originally 𝑧’s shortest path to 𝑥 is through 𝑦.

▪But, 𝑦 doesn’t know that! It only knows 𝑧 has a
path of length 5 to 𝑥.

x z

14

50

y
60

Distance vector : count-to-infinity problem

link cost changes:
▪ node detects local link cost change

▪ “bad news travels slow” – count-to-infinity problem

▪ This problem does not only happen between two
neighboring nodes

▪ See textbook for a solution for the two-node case

▪ It can happen with loops involving three or more
nodes.

x z

14

50

y
60

▪Distributed algorithms are tricky!

▪How they work, i.e.,
• How routers disseminate information

• How each router builds its table of distance to different destinations

▪ E.g., given DV tables and messages from neighboring routers, you
should be able to continue executing the algorithm and update DV
tables for subsequent timesteps.

▪ The count-to-infinity problem
• What it is

• Why it happens

• Be able to demonstrate it with an example.

What you need to know about distance vector
routing algorithms

▪ Continue the example in the slide for t = 2.
• Be careful to keep track of which node has received which messages at which

time and what is DV looks like.

▪Variation: Add an end-host node to the topology and re-do the first
two timesteps for a few routers.

▪What does the forwarding table look like at each stage?

Possible ways to practice more with DV

Comparison of LS and DV algorithms

Messages
LS: Each router’s “Advertisement”,

i.e., link state, will have to be
propagated to all the other
routers.

DV: Several messages exchanged
between neighbors until we
converge to the least cost paths;
convergence time varies

speed of convergence:

If you change the costs, how long until
routes are stable again?

LS :
• Converges when

• Messages about the change propagate
• Dijkstra’s algorithm for least-cost path

computation has to run

DV:
• may have routing loops
• count-to-infinity problem

Comparison of LS and DV algorithms

robustness: what happens if router malfunctions, or is compromised?

LS:

• router can advertise incorrect link cost

• each router computes only its own table based on the topology

DV:

• DV router can advertise incorrect path cost (“I have a really low-cost path to
everywhere”): black-holing

• each router’s DV is based on DV of other routers
• No full picture of the network

• Harder to detect such problems locally

• Errors propagate (easier) through the network.

▪ Link State (LS) algorithms and how they work

▪Distance Vector (DV) algorithms and how they work

▪How LS and DV are different from each other.

What you need to know about routing algorithms so
far

	Slide 1: CS 456/656 Computer Networks
	Slide 2: A note on the slides
	Slide 3: Thanks for filling out the survey!
	Slide 4: Network layer: roadmap
	Slide 5: Distance vector routing algorithms
	Slide 6: Distance vector routing algorithms
	Slide 7: Distance vector algorithm
	Slide 8: Bellman-Ford example
	Slide 9: Distance vector algorithm
	Slide 10: Distance vector algorithm:
	Slide 11: Distance vector example: iteration
	Slide 12: Distance vector example: iteration
	Slide 13: Distance vector example: iteration
	Slide 14: Distance vector example: iteration
	Slide 15: Distance vector example: iteration
	Slide 16: Distance vector example: iteration
	Slide 17: Distance vector example: iteration
	Slide 18: Distance vector example: iteration
	Slide 19: Distance vector example: iteration
	Slide 20: Distance vector example: iteration
	Slide 21: Distance vector example: computation
	Slide 22: Distance vector example: computation
	Slide 23: Distance vector example: iteration
	Slide 24: Distance vector example: computation
	Slide 25: Distance vector example: computation
	Slide 26: Distance vector example: iteration
	Slide 27: Distance vector example:
	Slide 28: Distance vector: state information diffusion
	Slide 29: Distance vector is asynchronous
	Slide 30: Distance vector: link cost changes
	Slide 31: Distance vector: link cost changes
	Slide 32: Distance vector : count-to-infinity problem
	Slide 33: Distance vector : count-to-infinity problem
	Slide 34: What you need to know about distance vector routing algorithms
	Slide 35: Possible ways to practice more with DV
	Slide 36: Comparison of LS and DV algorithms
	Slide 37: Comparison of LS and DV algorithms
	Slide 38: What you need to know about routing algorithms so far

