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▪ If you have not, there is still time

▪ We’ll discuss the results and potential upcoming changes soon

Thanks for filling out the survey!



Network layer: roadmap

▪ Network layer overview

▪ Routing algorithms
• Link state 

• Distance vector

▪ Network layer in the Internet



Distance vector routing algorithms

▪ Suppose node node 𝑥 has 𝑛 neighbors, 𝑣1, 𝑣2, … , 𝑣𝑛
▪ The least-cost path from node 𝑥 to node 𝑦 will pass one of 𝑥’s 

neighbors.
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Distance vector routing algorithms

▪ To find its least-cost path to 𝑦, 𝑥 doesn’t necessarily need to build 
the entire network graph.

▪ It only need to know
• 𝐷𝑣𝑖 𝑦  : the distance from 𝑣𝑖 to 𝑦

• 𝑐𝑥,𝑣𝑖 : the cost of the direct link from 𝑥 to 𝑣𝑖
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Based on Bellman-Ford (BF) equation (dynamic programming):

Distance vector algorithm 

Let Dx(y): cost of least-cost path from x to y.

Then:

   Dx(y) = minv { cx,v + Dv(y) }

   

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v



Bellman-Ford example
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Suppose that u’s neighboring nodes, x,v,w, know that for destination c:

Du(c) = min { cu,v + Dv(c),

                    cu,x + Dx(c),

                    cu,w + Dw(c) }

Bellman-Ford equation says:Dv(c) = 6

v

Dw(c) = 4

w

Dx(c) = 4

x
= min {2 + 6,

           1 + 4,

           5 + 4}  = 5

node achieving minimum (node x) 
is next hop on estimated least-
cost path to destination (node c)
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Distance vector algorithm 

key idea: 
▪ from time-to-time, each node sends its own distance vector estimate 

to neighbors

▪ under minor, natural conditions, the estimate Dx(y) converge to the 
actual least cost dx(y) 

Dx(y) ← minv{cx,v + Dv(y)}  for each node y ∊ N

▪ when x receives new DV estimate from any neighbor, it updates its 
own DV using B-F equation:



Distance vector algorithm:  

iterative, asynchronous: each local 
iteration caused by: 

▪ local link cost change 

▪ DV update message from neighbor
wait for (change in local link 
cost or msg from neighbor)

each node:

distributed, self-stopping: each 
node notifies neighbors only when 
its DV changes

▪ neighbors then notify their 
neighbors – only if necessary

▪ no notification received, no 
actions taken!

recompute DV estimates using 
DV received from neighbor

if DV to any destination has 
changed, notify neighbors 



Distance vector example: iteration 

▪ We will walk through an example of distance vector routing

▪ For simplicity, we are not adding the end-host (orange) nodes to the 
example

▪ They do not participate in routing

▪ But, the routers will include the distance to them in their advertised 
distance vectors.



DV in a: 
Da(a)=0

Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: iteration

g h i
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t=0

▪ All nodes have 
distance estimates 
to nearest 
neighbors (only)

A few asymmetries:
▪ missing link
▪ larger cost

d e f

a b c

▪ All nodes send 
their local 
distance vector to 
their neighbors



Distance vector example: iteration

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=1

g h i
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1 1 1

1 1

1 1

8 1

d e f

a b c



Distance vector example: iteration

g h i
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All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=1

compute compute compute

compute compute compute

compute compute compute



Distance vector example: iteration

g h i

1 1

1 1 1
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1 1

8 1
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a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=1



Distance vector example: iteration

g h i

1 1

1 1 1
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d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=2



Distance vector example: iteration

g h i
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d e f
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All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=2

compute compute compute

compute compute compute

compute compute compute



Distance vector example: iteration

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
▪ receive distance 

vectors from 
neighbors

▪ compute their new 
local  distance 
vector

▪ send their new 
local distance 
vector to neighbors

t=2



Distance vector example: iteration

…. and so on

Let’s next take a look at the iterative computations at nodes

* Check out the online interactive 

exercises for more examples: 

http://gaia.cs.umass.edu/kurose_ross/interactive/



Distance vector example: iteration

…. and so on

Let’s next take a look at the iterative computations at nodes

Let’s look at the computation at node b at t = 1
Remember, b’s neighbors have sent b their DV record version at t = 0

* Check out the online interactive 

exercises for more examples: 

http://gaia.cs.umass.edu/kurose_ross/interactive/



DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

g h i
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1 1 1
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1 1
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t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ b receives DVs 
from a, c, e

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞



Distance vector example: computation
DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1
▪ b receives DVs 

from a, c, e, 
computes:

a b c

d e f

DV in b:

Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)}  = min{8,∞,∞} = 8 

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)}  = min{∞,1,∞} = 1 

Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)}  = min{9,∞,2} = 2 

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)}  = min{∞,∞,2} = 2 

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)}  = min{∞, ∞, ∞} = ∞ 

Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)}  = min{∞, ∞, 2} = 2 

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)}  = min{∞,∞,1} = 1 

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)}  = min{∞, ∞, ∞} = ∞ 



Distance vector example: iteration

Now, let’s look at the computation at node c at t = 1
Remember, c’s neighbors have sent c their DV record version at t = 0

* Check out the online interactive 

exercises for more examples: 

http://gaia.cs.umass.edu/kurose_ross/interactive/



Distance vector example: computation

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs 
from b

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞



Distance vector example: computation

g h i

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ c receives DVs 
from b computes:

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9 

Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1

Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞ 

Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2

Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞ 

Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞ 

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞ 

Dc(h) = min{cbc,b+Db(h)} = 1+ ∞ = ∞ 

DV in c:
Dc(a) = 9
Dc(b) = 1
Dc(c) = 0
Dc(d) = 2
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

compute



Distance vector example: iteration

Now, let’s look at the computation at node e at t = 1
Remember, e’s neighbors have sent e their DV record version at t = 0

* Check out the online interactive 

exercises for more examples: 

http://gaia.cs.umass.edu/kurose_ross/interactive/



Distance vector example:

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:

Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

▪ e receives DVs 
from b, d, f, h

a b c

DV in f:
Df(a) = ∞
Df(b) = ∞
Df(c) = ∞
Df(d) = ∞
Df(e) = 1
Df(f) = 0
Df(g) = ∞
Df(h) = ∞
Df(i) = 1

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

DV in h:
Dh(a) = ∞
Dh(b) = ∞
Dh(c) = ∞
Dh(d) = ∞
Dh(e) = 1
Dh(f) = ∞
Dh(g) = 1
Dh(h) = 0
Dh(i) = 1

DV in d:
Dc(a) = 1
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = 0
Dc(e) = 1
Dc(f) = ∞ 
Dc(g) = 1
Dc(h) = ∞
Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in e at 
t=1?

compute



Distance vector: state information diffusion

t=0 c’s state at t=0 is at c only

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

c’s state at t=0 has propagated to b, and 
may influence distance vector computations 
up to 1 hop away, i.e., at b

t=1

c’s state at t=0 may now influence distance 
vector computations up to 2 hops away, i.e., 
at b and now at a, e as well

t=2

c’s state at t=0 may influence distance vector 
computations up to 3 hops away, i.e., at d, f, h

t=3

c’s state at t=0 may influence distance vector 
computations up to 4 hops away, i.e., at g, i

t=4

Iterative communication, computation steps diffuses information through network: 

t=1 

t=2 

t=3 

t=4 



▪ The example we discussed was simplified…

▪We assumed there is a synchronized clock between all routers
• Syncing the message transfers and computation.

▪ In reality, the routers are not all synchronized with each other

Distance vector is asynchronous



Distance vector: link cost changes

“good news 
travels fast”

t0 : y detects link-cost change, updates its DV, informs its neighbors.

t1 : z receives update from y, updates its DV, computes new least cost 
to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its DV.  y’s least costs do not 
change, so y does not send a message to z. 

link cost changes:
▪ node detects local link cost change 

▪ updates routing info, recalculates local DV

▪ if DV changes, notify neighbors 

x z

14

50

y
1



Distance vector: link cost changes

link cost changes:
▪ node detects local link cost change 

▪ “bad news travels slow” – count-to-infinity 
problem:

x z

14

50

y
60

• y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So 
y computes “my new cost to x will be 6, via z); notifies z of new cost of 6 to x.

• z learns that path to x via y has new cost 6, so z  computes “my new cost to 
x will be 7 via y), notifies y of new cost of 7 to x.

• y learns that path to x via z has new cost 7, so y  computes “my new cost to 
x will be 8 via y), notifies z of new cost of 8 to x.

• z learns that path to x via y has new cost 8, so z  computes “my new cost to 
x will be 9 via y), notifies y of new cost of 9 to x.
…



Distance vector : count-to-infinity problem

link cost changes:
▪ node detects local link cost change 

▪ “bad news travels slow” – count-to-infinity problem

▪  In this specific example, the problem happens 
because: 

▪ originally 𝑧’s shortest path to 𝑥 is through 𝑦. 

▪But, 𝑦 doesn’t know that! It only knows 𝑧 has a 
path of length 5 to 𝑥.

x z

14

50

y
60



Distance vector : count-to-infinity problem

link cost changes:
▪ node detects local link cost change 

▪ “bad news travels slow” – count-to-infinity problem

▪ This problem does not only happen between two 
neighboring nodes

▪ See textbook for a solution for the two-node case

▪ It can happen with loops involving three or more 
nodes. 

x z

14

50

y
60

▪Distributed algorithms are tricky!



▪How they work, i.e.,
• How routers disseminate information

• How each router builds its table of distance to different destinations

▪ E.g., given DV tables and messages from neighboring routers, you 
should be able to continue executing the algorithm and update DV 
tables for subsequent timesteps.

▪ The count-to-infinity problem
• What it is

• Why it happens

• Be able to demonstrate it with an example.

What you need to know about distance vector 
routing algorithms



▪ Continue the example in the slide for t = 2. 
• Be careful to keep track of which node has received which messages at which 

time and what is DV looks like.

▪Variation: Add an end-host node to the topology and re-do the first 
two timesteps for a few routers.

▪What does the forwarding table look like at each stage?

Possible ways to practice more with DV



Comparison of LS and DV algorithms

Messages
LS: Each router’s “Advertisement”, 

i.e., link state, will have to be 
propagated to all the other 
routers.

DV: Several messages exchanged 
between neighbors until we 
converge to the least cost paths; 
convergence time varies

speed of convergence:

If you change the costs, how long until 
routes are stable again?

LS : 
• Converges when 

• Messages about the change propagate
• Dijkstra’s algorithm for least-cost path 

computation has to run 

DV:
• may have routing loops
• count-to-infinity problem



Comparison of LS and DV algorithms

robustness: what happens if router malfunctions, or is compromised?

LS: 

• router can advertise incorrect link cost

• each router computes only its own table based on the topology

DV:

• DV router can advertise incorrect path cost (“I have a really low-cost path to 
everywhere”): black-holing

• each router’s DV is based on DV of other routers 
• No full picture of the network

• Harder to detect such problems locally 

• Errors propagate (easier) through the network.



▪ Link State (LS) algorithms and how they work

▪Distance Vector (DV) algorithms and how they work

▪How LS and DV are different from each other.

What you need to know about routing algorithms so 
far
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