
CS 456/656
Computer Networks

Mina Tahmasbi Arashloo and Bo Sun

Fall 2024

Lecture 18: Router/Switch Architecture

A note on the slides

Adapted from the slides that
accompany this book.

Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

All material copyright 1996-2023
J.F Kurose and K.W. Ross, All Rights Reserved

And lecture notes from Anirudh
Sivaraman, NYU

What we discussed before

Host A

Host B

R

R

R

R

R

Router

Host C

Host D

▪ Packets can be buffered in routers

• delay and loss

• network congestion

What we discussed before

▪ A high-level view of a router
architecture.

• multiple input ports

• multiple output ports

• a switching fabric

Host A

Host B

R

R

R

R

R

Router

Host C

Packets are queued in the router

Host D

high-speed
switching

fabric

router input ports router output ports

▪ Packets can be buffered in routers

• delay and loss

• network congestion

What we discussed before

▪ A high-level view of a router
architecture.

• multiple input ports

• multiple output ports

• a switching fabric

Host A

Host B

R

R

R

R

R

Router

Host C

Packets are queued in the router

Host D

high-speed
switching

fabric

router input ports router output ports

This Lecture: How are packets
buffered and managed in routers?

▪ Packets can be buffered in routers

• delay and loss

• network congestion

Router architecture and buffer management

▪Router architecture
• Shared memory

• Output queueing

• Input queueing

▪Buffer management and scheduling

▪ transfer packets from input links to appropriate output links

Switching fabrics

high-speed
switching

fabric

N input ports N output ports

. . .

. . .

▪ Suppose
▪ All packets are of the same size

▪ Define the time it takes to send/receive a packet on a port as our time unit,
and call it a tick (today, that’s usually a few nanoseconds!)

R

R

R

R

Switching fabrics

high-speed
switching

fabric

N input ports N output ports

. . .

. . .

▪ In each tick, we can

▪ receive at most a packet on each input port (up to N ports)

▪ send at most a packet on each output port (up to N ports)

R

R

R

R

Switching fabrics

high-speed
switching

fabric

N input ports N output ports

. . .

. . .

▪ Ideally, the switching fabric can move N packets in each tick
▪ If the link rates are R, an ideal switching fabric moves packets at

rate NR.

R

R

R

R

(rate: NR,
ideally)

On each tick, we can

receive a packet on each input port

send a packet on each output port

Switching fabrics

high-speed
switching

fabric

N input ports N output ports

. . .

. . .

▪ If two or more input ports have a packet destined to the
same output port
▪ only one can go out in the next tick(s)

▪ the rest have to wait somewhere

R

R

R

R

(rate: NR,
ideally)

On each tick, we can

receive a packet on each input port

send a packet on each output port

Switching fabrics

high-speed
switching

fabric

N input ports N output ports

. . .

. . .

▪ If two or more input ports have a packet destined to the
same output port
▪ only one can go out in the next tick(s)

▪ the rest have to wait somewhere

R

R

R

R

(rate: NR,
ideally)

On each tick, we can

receive a packet on each input port

send a packet on each output port

Queued in a buffer (where?)

Router architecture and buffer management

▪Router architecture
• Shared memory

• Output queueing

• Input queueing

▪Buffer management and scheduling

Option 1 – Shared memory

memory

▪ A single pool of shared memory between all input and output ports.

▪ Input port receives a packet, and then puts it in some memory region

▪ Output port pulls the next packet it is supposed to send out from the
same memory

Option 1 – Shared memory On each tick, we can

receive a packet on each input port

send a packet on each output portFor every tick:

▪ memory needs to support N enqueues
▪ Each input port may receive a packet and has to put it in a queue

▪ memory needs to support N dequeues
▪ Each output port may have outstanding packets to send

memory

Option 1 – Shared memory

▪ Pros: dynamically allocate more or less memory to ports depending
on current traffic demands

▪ Cons: difficult to have a large high-speed memory that can do N
enqueues and dequeues in every tick

▪ Remember, tick ~= a few nsecs

memory

Router architecture and buffer management

▪Router architecture
• Shared memory

• Output queueing

• Input queueing

▪Buffer management and scheduling

Option 2 – Output queuing

▪ N separate memories, one for each output port

▪ Input port receives a packet, and then puts it in the memory of the
output port it is supposed to exit from

▪ Output port pulls the next packet from its corresponding memory

mem

mem

mem

…
…

…
..…

…
…

Option 2 – Output queuing
On each tick, we can

receive a packet on each input port

send a packet on each output port
For every tick:

▪ each memory needs to support N enqueues
▪ all input ports may receive packets going to the same output port

▪ each memory only needs to support 1 dequeue per tick

mem

mem

mem

…
…

…
..…

…
…

Option 2 – Output queuing

mem

mem

mem

…
…

…
..…

…
…

▪ Pros: For each memory, 1 dequeue per tick

▪ as opposed to N dequeues per tick in shared memory

▪ Cons:

▪ Static allocation of memory to
output ports: if port 1 is not
getting too much traffic and port 2
is, can’t give port 1’s unused
memory to port 2

▪ Each memory still has to support N
enqueues per tick

Router architecture and buffer management

▪Router architecture
• Shared memory

• Output queueing

• Input queueing

▪Buffer management and scheduling

▪N separate memory pools, one for each input port.

▪ Input port receives a packet, puts it in the dedicated memory for that
input port.
▪ 1 enqueue per tick

▪ Output port gets the next packet from the memory of one of the
input ports that have packets destined to it
▪ 1 dequeue per tick

Option 3 – Input queuing

Option 3 – Input queuing

mem

mem

mem

32

1

12

3

At most one enqueue in each memory per tick

1

2

3

1

2

3

Option 3 – Input queuing

mem

mem

mem

32

1

12

3

At most one dequeue from each memory per tick

1

2

3

1

2

3

Option 3 – Input queuing

mem

mem

mem

2
1

3
2

3

At most one dequeue from each memory per tick

1

2

3

1

2

3

▪ Will an input queue ever need to send the same packet to multiple output
queues (hence the need for >1 dequeue per tick?
▪ for a rarely used capability called multicast (not covered in this course).

1

Option 3 – Input queuing

mem

mem

mem

In every tick
▪ Each input sends to at

most one output
▪ Each output receives

from at most each input

32

1

12

3

How do we coordinate packets between inputs and outputs?

1

2

3

1

2

3

Option 3 – Input queuing

mem

mem

mem

32

1

12

3

1

2

3

1 2 3

In every tick
▪ Each input sends to at most

one output
▪ Each output receives from

at most each input

Option 3 – Input queuing

mem

mem

mem

32

1

12

3

1

2

3

1 2 3

In every tick
▪ Each input sends to at most

one output
▪ Each output receives from

at most each input

Option 3 – Input queuing

mem

mem

mem

32

1

12

3

1

2

3

1 2 3

In every tick
▪ Each input sends to at most

one output
▪ Each output receives from

at most each input

Known as the crossbar

Option 3 – Input queuing

mem

mem

mem

2

12

3

1

2

3

1 2 3

In every tick
▪ Each input sends to at most

one output
▪ Each output receives from

at most each input

Known as the crossbar

Option 3 – Input queuing

mem

mem

mem

2

12

3

1

2

3

1 2 3

In every tick
▪ Each input sends to at most

one output
▪ Each output receives from

at most each input

Known as the crossbar

Scheduling the crossbar:
Bipartite matching

▪ Pros:

• For each memory, 1 enqueue and
1 dequeue per tick

▪ Cons:

• Static allocation of memory
resources to input ports

• Head of line blocking (HoL
blocking)

Option 3 – Input queuing

Head of line blocking
mem

mem

mem

32

1

12

3

1

2

3

1 2 3
The “path” between 3 and 2 is open!
(does not collide with any other transfer)

But, the head of the line (packet going to 1) is
blocking this packet to get to output port 2

Revised Option 3 – Virtual output queuing

▪ Instead of one queue at each
input port, have N queues at each
input port, one for the packets
destined to one output port.

▪Virtual output queue (VOQ) j at
input port i
• is located in input port i’s memory

• buffers the packets entering from
input port i and destined towards
output port j

Revised Option 3 – Virtual output queuing

3

2

1

2

3

1 2 3

3

1

2

1

Not stuck behind the packet going to output
port 1 anymore

Revised Option 3 – Virtual output queuing

3

2

1

2

3

1 2 3

3

1

2

1

Not stuck behind the packet going to output
port 1 anymore

Make sure you know

▪When queues form

▪ The differences of shared memory, output-queueing and
input-queueing

▪ The pros and cons of each approach

▪ For input queueing approach
• How crossbar works?

• What head of line blocking is?

• What virtual output queues are and how they work in conjunction
with the crossbar?

Architecture trends

▪ Early architectures were shared memory

▪ Then moved towards output-queued architectures

▪ Then came input-queued architectures.

Architecture trends

▪ Today, there is a renewed interest in output-queued and shared
memory architectures

▪Data centers have many switches (100s of thousands)

▪ To keep the costs down, vendors have reduced the amount of
memory available for buffering in these switches
• Easier, e.g., compared to a WAN, to keep the queues shorter in DCs, specially

with the help of congestion control algorithms.

▪ Easier to make smaller high-speed memory with multiple enqueues
and/or dequeues per tick

▪With output-queued or shared-memory architectures, no need for
dealing with efficient scheduling of a crossbar.

Router architecture and buffer management

▪Router architecture
• Shared memory

• Output queueing

• Input queueing

▪Buffer management and scheduling

▪ Independent of where the queues are in the router
architecture, there are some important questions:
• Buffer size: How large should a buffer be?

• Queue management: When the queue is full, which packet do we
drop? What do we do when the queue starts building up?

• Packet scheduling: Which packet in the queue gets dequeued first?
Should it be first-in first-out? Something else?

Queue/Buffer management and scheduling

There is no easy answer:

▪ Too small: can’t absorb bursts, keeps dropping packets

▪ Too large: can hurt performance
• buffer bloat: When the buffer is too large, it will take a long time to fill up

before a packet is dropped (however, TCP only realizes there is congestion
when a packet is dropped and will not decrease its sending rate). In the
meantime, all packets will experience increasing queueing delay.

• Delay-based congestion control algorithms do better here.

How large should a buffer be?

▪When a new packet arrives to a full queue, which packet do we drop?

▪ Tail drop: drop arriving packet

▪ Priority: drop/remove based on priority
• E.g., if the incoming packet has higher priority than a packet already in the

queue, drop the lower priority packet and insert the incoming packet into the
queue.

Queue management – Drop policy

queue

(waiting area)

packet

arrivals
packet

departureslink

 (server)

▪When the queue starts filling up, one strategy is to mark packets to
signal the onset of congestion to the end points

▪ Recall our discussion about Early Congestion Notification (ECN) and
its role in congestion control

▪When should we start/stop marking packets?

▪Which packets do we mark?
• All packets after the queue size passes a threshold?

• From the flow with the most packets in the queue?

• …

Queue management – Marking

▪ So far, we have assumed that our queues are first in first out (FIFO)

Packet scheduling - FIFO

queue

(waiting area)

packet

arrivals

packet

departures

scheduler

Abstraction: queue

▪ But, there are other packet scheduling algorithms as well.

Priority scheduling:

▪ arriving traffic classified to
figure out priority
• any header fields can be

used for classification

Packet scheduling: priority

high priority queue

low priority queue

arrivals

classify departuresscheduler

1 3 2 4 5

arrivals

departures

packet
in

service

▪ send packet from highest
priority queue that has
buffered packets
• FIFO within priority class

1 3 4

2

5

1 3 2 4 5

Instead of one queue for all
packets going to the same
output port, there are two
queues, one for each priority

Round Robin (RR) scheduling:

▪arriving traffic classified,
queued by class
• any header fields can be

used for classification

Packet scheduling: round robin

classify
arrivals

departures

scheduler

▪scheduler cyclically,
repeatedly scans class
queues, sending one
complete packet from each
class (if available) in turn

Weighted Fair Queuing (WFQ):

▪ generalized Round Robin

Packet scheduling: weighted fair queueing

classify
arrivals

departures

scheduler
w1

w2

w3

wi

jwj

▪ minimum bandwidth
guarantee (per-traffic-class)

▪ each class, i, has weight, wi,
and gets weighted amount
of service in each cycle:

▪ For exam purposes
• No need to know much about architecture trends and strategies for setting

queue sizes

▪ Know the space of different strategies for queue management
• That is, the fact that there are different options for drop and marking policies

▪Understand how FIFO, priority, and round robin packet scheduling.
• Given a sequence of packets and the scheduling policy, you should be able to

figure out the departures.

Make sure you know

	Slide 1: CS 456/656 Computer Networks
	Slide 2: A note on the slides
	Slide 3: What we discussed before
	Slide 4: What we discussed before
	Slide 5: What we discussed before
	Slide 6: Router architecture and buffer management
	Slide 7: Switching fabrics
	Slide 8: Switching fabrics
	Slide 9: Switching fabrics
	Slide 10: Switching fabrics
	Slide 11: Switching fabrics
	Slide 12: Router architecture and buffer management
	Slide 13: Option 1 – Shared memory
	Slide 14: Option 1 – Shared memory
	Slide 15: Option 1 – Shared memory
	Slide 16: Router architecture and buffer management
	Slide 17: Option 2 – Output queuing
	Slide 18: Option 2 – Output queuing
	Slide 19: Option 2 – Output queuing
	Slide 20: Router architecture and buffer management
	Slide 21: Option 3 – Input queuing
	Slide 22: Option 3 – Input queuing
	Slide 23: Option 3 – Input queuing
	Slide 24: Option 3 – Input queuing
	Slide 25: Option 3 – Input queuing
	Slide 26: Option 3 – Input queuing
	Slide 27: Option 3 – Input queuing
	Slide 28: Option 3 – Input queuing
	Slide 29: Option 3 – Input queuing
	Slide 30: Option 3 – Input queuing
	Slide 31: Option 3 – Input queuing
	Slide 32: Head of line blocking
	Slide 33: Revised Option 3 – Virtual output queuing
	Slide 34: Revised Option 3 – Virtual output queuing
	Slide 35: Revised Option 3 – Virtual output queuing
	Slide 36: Make sure you know
	Slide 37: Architecture trends
	Slide 38: Architecture trends
	Slide 39: Router architecture and buffer management
	Slide 40: Queue/Buffer management and scheduling
	Slide 41: How large should a buffer be?
	Slide 42: Queue management – Drop policy
	Slide 43: Queue management – Marking
	Slide 44: Packet scheduling - FIFO
	Slide 45: Packet scheduling: priority
	Slide 46: Packet scheduling: round robin
	Slide 47: Packet scheduling: weighted fair queueing
	Slide 48: Make sure you know

