14.

Define \(\text{min}(L) = \{ x \in L : \text{no proper prefix of } x \text{ is in } L \} \)

Claim: \(\text{min}(L) = L - (L\Sigma^+) = L \cap (\overline{L\Sigma^+}) \), and \(\text{min}(L) \) is regular.

Proof of \(\text{min}(L) \subseteq L - (L\Sigma^+) \): Assume \(x \in \text{min}(L) \). Then by definition of \(\text{min}(L) \), \(x \in L \). Towards a contradiction, assume \(x \notin L - (L\Sigma^+) \). Then \(x \in L \) and \(x \) is of the form \(yz \) where \(y \in L \) and \(z \in \Sigma^+ \). Then \(y \) is a proper prefix of \(x \), since \(z \) is non-empty, and since \(y \in L \) this contradicts that \(x \in \text{min}(L) \). So \(x \in L - (L\Sigma^+) \).

Proof of \(L - (L\Sigma^+) \subseteq \text{min}(L) \): Assume \(x \in L - (L\Sigma^+) \). Towards a contradiction, assume \(x \notin \text{min}(L) \). Then \(x \in L \) and there is a proper prefix of \(x \) which is in \(L \), so \(x = yz \) where \(y \in L \) and \(z \) is a nonempty string over \(\Sigma \), so \(z \in \Sigma^+ \). But then \(x = yz \in L\Sigma^+ \), which contradicts that \(x \in L - (L\Sigma^+) \), so \(x \in \text{min}(L) \).

So \(\text{min}(L) = L - (L\Sigma^+) \).

Lastly, \(\text{min}(L) = L - (L\Sigma^+) = L \cap (\overline{L\Sigma^+}) \) and regular languages are closed under intersection, concatenation, and complement (proved in cs360), so if \(L \) is regular then \(\text{min}(L) \) must also be regular.