18. Is the following language regular? \(\{ xwx^R : x, w \in \{0,1\}^+ \} \)

Let \(L = \{ xwx^R : x, w \in \{0,1\}^+ \}, \Sigma = \{0,1\} \). We will show that \(L \) is regular by providing a regular expression \(R \) and showing \(L(R) = L \).

\[
R = (0\{0,1\}^+0) \cup (1\{0,1\}^+1)
\]

We show that \(\forall y \in \Sigma^*, y \in L \iff y \in L(R) \)

(\(\implies \)): Consider any string \(y \in L \). It obviously has the form \(y = xwx^R \) by definition for some \(x, w \in \Sigma^+ \). Let the first letter of \(x \) be \(a \). Since \(y = xwx^R \), it is clear that \(y \) starts and ends with \(a \) and thus can be rewritten as

\[
y = aw'a, a \in \Sigma, w' \in \Sigma^+
\]

Since \(a \in \Sigma, w' \in \Sigma^+ \), it is clear that \(y \in L(R) \).

(\(\impliedby \)): Consider any string \(y \in L(R) \).

Case 1: Suppose \(y \in L(0\{0,1\}^+0) \). So \(y = 0w0, w \in \Sigma^+ \). Let \(x = 0 = x^R \), and we can clearly see \(y \in L \).

Case 2: Nearly identical to case 1