Problem 27:
Call a language L bounded if there exists a finite number of words w_1, w_2, \ldots, w_n such that $L \subseteq w_1^* \cdots w_n^*$.

Give an example of regular language that is not bounded.

Solution:
Consider the alphabet $\Sigma := \{a, b, c\}$ on three symbols a, b, c.

Then we know that Σ^ω, the set of infinite words over the alphabet has an infinite square-free string by Theorem 2.5.4 in the text by Shallit, “A Second Course in Formal Languages and Automata Theory”, 2ed.

Let $s \in \Sigma^\omega$ be this infinite squarefree string.

Now consider $L = \Sigma^*$ to be our candidate language that is both regular and not bounded. $L = \Sigma^*$ is then the set of all finite strings over the three-symbol alphabet $\Sigma = \{a, b, c\}$. We then must show that L is both regular and not bounded.

Part 1: Proof of Regularity
We prove that L is regular by giving a construction of a DFA M that recognizes L, namely by using an automaton that recognizes all inputs:

$$
\begin{align*}
\begin{array}{ccc}
& & \\
 & \downarrow_{a,b,c} & \\
q_i & \rightarrow & \\
\end{array}
\end{align*}
$$

Figure 1: A diagram of the DFA M

Therefore, since the DFA $M = (\{q_i\}, \Sigma, \delta, q_i, \{q_i\})$ recognizes $L = \Sigma^*$, with $\delta(q_i, d) = q_i$ for all $d \in \Sigma = \{a, b, c\}$, L is regular.

Part 2: Proof of Unboundedness
It now remains to prove that L is not bounded. To do so, we proceed via proof by contradiction.
Now suppose on the contrary that L is bounded. The for all words $w \in L$, there exists $w_1, w_2, \ldots, w_n \in L$ such that $w = w_1^{k_1}w_2^{k_2} \cdots w_n^{k_n}$.

Now since $L = \Sigma^*$, $w_1, w_2, \ldots, w_n \in \Sigma^*$ so that the lengths of w_1, w_2, \ldots, w_n are finite. Call these lengths $|w_1|, |w_2|, \ldots, |w_n|$.

Then define $\ell_m := (\sum_{i=1}^n |w_i|) + 1$ to be the sum of the lengths of these words plus one so that ℓ_m is strictly greater than the sum of the lengths of the w_i.

We can then choose a prefix p of fixed length of our infinite squarefree string s such that $s = pq$, $q \in \Sigma^*$, with $|p| = \ell_m$ so that the finite word $p \in L = \Sigma^*$ is strictly longer than the sum of the lengths of the w_i and is squarefree.

Since p is longer than sum of the lengths of the w_i it cannot be of the form $u = w_1^{k_1}w_2^{k_2} \cdots w_n^{k_n}$ where $k_i \in \{0, 1\}$ for $1 \leq i \leq n$ since $|u| < |p|$. Furthermore, none of the k_i can be greater than one, since p is squarefree, and if $k_i \geq 2$, then u has a square so that $u \neq p$.

Hence p cannot be written in the form $w_1^{k_1}w_2^{k_2} \cdots w_n^{k_n}$ with $k_i \in \{0, 1, 2, \ldots\}, 1 \leq i \leq n$.

Thus, $p \notin w_1^* \cdots w_n^*$ for any finite n and choice of $w_1, \ldots, w_n \in L$. But $p \in L = \Sigma^*$, so $L \notin w_1^* \cdots w_n^*$. Thus, L is not bounded.

Part 3: Conclusion

Thus, having proved both that L is regular in Part 1 and that L is not bounded in Part 2, it follows that $L = \Sigma^* = \{a, b, c\}^*$ is an example of a regular language that is not bounded.

□