Problem 6:
Show that for every infinite string w there must be some letter a and some finite string x such that axa appears infinitely often as a subword of w. Furthermore, such an x exists with $|x| \leq |\Sigma| - 1$, where Σ is the alphabet.

Solution:
Since the string w is infinite, it contains infinitely many subwords of length $n = |\Sigma| + 1$.

Now, since the alphabet Σ is finite, there are only finitely many possible distinct subwords of length n in w. In fact, the number of possible distinct subwords of length n is $|\Sigma|^n$, clearly finite.

We claim that at least one of these subwords occurs infinitely many times within the string w. If we assume that all of these subwords occur finitely many times, then that would mean that w must be finite as well, a contradiction. Thus, there exists a string u of length n that appears infinitely often as a subword of w.

Given that the length of the string u is $n > |\Sigma|$, by the pigeonhole principle, every such subword must contain at least one letter a that occurs more than once in the subword.

From this, we have that u can be written as $vaxay$ for strings v, x, and y. Therefore, u contains subword axa where $|axa| \leq |u| = n$. It follows from this that $|x| \leq n - 2 = |\Sigma| - 1$.

Since the string u contains axa and appears infinitely many times in w as a subword, the string axa appears infinitely as a subword of w as well.

Thus, for every infinite string w there must be some letter a and some finite string x such that axa appears infinitely often as a subword of w. Furthermore, such an x exists with $|x| \leq |\Sigma| - 1$, where Σ is the alphabet.