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Optimal Binary Search Trees
Sections 12, 15.5, 16.2 

Searching under the comparison model
Binary search: lg n upper and lower bounds 

also in “expected case” (probability of 
search same for each element) 

With some balanced binary scheme, updates 
also in  O(lg n)

But what if some elements are requested 
more than others?

Start with stochastic model: Given a set of n 
keys, K =<k1.. kn> with independent 
probabilities of access, pi.

How can we organize a search structure to 
minimize the expected number of 
comparisons for a search?

Clearly this is a binary search tree, though in 
general far from balanced.

How do we find the optimal tree? 
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Optimal Binary Search Trees
Try a few top down heuristics, and 

we easily get non-optimal trees.
We need some definitions:
ki : ith largest of key value i=1..n
di : dummy leaf after ki,before ki+1 

i=0..n
pi : probability of a request for ki
qi: probability of a request for an 

element after pi and before pi+1.
w(i,j): probability of element in OPEN 

INTERVAL (ki-1,kj+1), so 
w(i,j)=∑k=i,.jpk + ∑k=i-1..jqk;  w(1,n)=1
{find all w(i,j) in O(n2) time
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The Dynamic Program

Expected cost of a search:
E[search in T ] = 
∑(depthT(ki) +1)pi +∑(depthT(di) +1)qi

So ..
Compute
e[i,j] = cost of optimal i,j tree

= qi-1 if j=i-1 and
= mini≤r≤j{e[i,r-1]+e[r+1,j]+w(i,j)} if i≤j

Also keep track of the root as r[i,j]
r[i+1,i] = di ; r[i,i] = ki ;
Otherwise r[i,j] determined by e[i,j] 
calculation

This gives a straightforward dynamic 
program, which we can do with a 
loop r=i,..j and recursive calls, of 
three loops for Θ(n3) time, and Θ(n2) 
space. 
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Improvement

Note: the loop to compute {r,e}[i,j] 
goes all the way from i to j.

Is all this necessary?
Lemma: r[i,j] cannot precede r[i,j-1] 

or follow r[i+1,j].    {Omit proof}

So modify the inner loop 
Change “r = i..j” to “r = r[i,j-1]..r[i+1,j]”
Look at runtime; series telescopes

Theorem: The optimal binary search 
tree can be determined in Θ(n2) 
time and Θ(n2) space. 

This is the best known algorithm, 
indeed there is no known 
polynomial time, o(n2) space 
method.
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Good Trees in Less Space

Suppose we don’t have Θ(n2) space.
How can we get a good tree?
Greed !!!

First Attempt: Choose root as key 
with greatest probability.

1/n+ε

1/n-ε
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Better Greed

Choose root to balance the weights 
on either side as well as possible. 
There are a few (picky) options: 

MinMax: Minimizes the weight of 
largest subtree

“Balance”: Choose root to make 
subtree wts as close as possible

Not optimal; but perhaps, not bad.
Naïve algorithm is Θ(n2) (worst case), 

but O(n) space.
How can we make it faster?

.02

.49.49
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A Faster Greed Algorithm

Given keys in order, and probs: pi, di

Let Li = probability of being left of ki

For root of tree in range [st,fin], find, 
by binary search, key with Li below 
and Li+1 above (Lst+Lfin+1)/2 

Hence an O(n lg n) method.

Can we improve this?
Yes … note the method is linear if 

you always “get lucky” with “split” 
near the middle.

So … Start at with one comparison in 
the middle. Then move to the “side 
still in” and double your way 
toward the middle, till desired 
element “bracketed”, finish with 
binary search.
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Runtime

Cost of discovering split point: 
O(lg v), v is #keys from near end.

Thm: The algorithm runs in O(n) time. 
i.e. the splits have an amortized 
cost of O(1).

Proof sketch:
Try induction: T(n) ≥ αn – β lg n
Tune constants for the base cases
Basic recurrence:
T(n) ≥ T(a) +T(n-a-1) + 2 lg a   {1<a≤n/2}
Substitute: T(n) =
αa-βlg(a) +αn- αa- α - βlg(n-a-1)+2lg a
We require
βlg(a)+βlg(n-a-1)+α > lg n {when a<n/2}
This is fine when a is large, α and β

have to be tuned to handle the 
small values of a.
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Quality of Solutions

The approximation method is rather 
good. Define: 

• P = ∑ pi

• H, the entropy of a distribution, as 
H(p1..pn,q0..qn) = −∑ pi lg pi+∑qi lg qi
{Note H is maximized when all 
probabilities are the same}

• Copt and  Capprox as tree costs
Then
Thm: H – P lg(eH/2P) ≤Copt ≤ Capprox ≤

H+2 – P
i.e. optimal and approximate tree 

have costs with lg H of optimal.
Proof: Omitted
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But what it probabilities change… 
or we don’t know them?

Could count accesses and update optimal 
tree based on changing probabilities.

{this has been done for Huffman codes}
Or
Recall linear search and the “move to front” 

heuristic. Assume list starts empty and 
element put at the end the first time it is 
requested

Thm (from CS 240): The cost of a sequence 
of searches under the move to front 
heuristic is within a factor of 2 of that of 
the optimal (static) order. 

Indeed 
Thm: The amortized cost of a search under 

move to front is at most twice the optimal 
we could get if we knew the sequence and 
updated the list. {Off line updates work by 
swapping adjacent items}
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Splay Trees
See Goodrich and Tamassia Section 3.4

Analogy for search trees:
… when access is made perform 

rotations to move requested 
element to root.

Must be careful, a simple rotation 
does not give the ideal result.

3 moves:
Zig-zig: abc (similarly cba)

a

b

c

c

bT1 T4

T3T2 a

T3 T4 T1 T2
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And the other two forms

Zig zag: bca (or bac)

and Zig: No grandparent

a

b

c
c

b

a

T2

T1

T3

T4 T1 T2 T3 T4

b

a T3 b

a

T1

T1 T2 T2 T3
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Splay trees:
The results

Thm: On any long enough sequence 
of searches, the length of the 
search path on a spay tree is at 
most twice that of the optimal tree 
for that sequence.

Hence:
Thm: The amortized cost of 

searching in a splay tree is at most 
2H + O(1). 

Proofs: Omitted (see G&T)
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