
CS 466 Optimal Binary Search Trees Slide 3-1

Optimal Binary Search Trees
Sections 12, 15.5, 16.2

Searching under the comparison model
Binary search: lg n upper and lower bounds

also in “expected case” (probability of
search same for each element)

With some balanced binary scheme, updates
also in O(lg n)

But what if some elements are requested
more than others?

Start with stochastic model: Given a set of n
keys, K =<k1.. kn> with independent
probabilities of access, pi.

How can we organize a search structure to
minimize the expected number of
comparisons for a search?

Clearly this is a binary search tree, though in
general far from balanced.

How do we find the optimal tree?

CS 466 Optimal Binary Search Trees Slide 3-2

Optimal Binary Search Trees
Try a few top down heuristics, and

we easily get non-optimal trees.
We need some definitions:
ki : ith largest of key value i=1..n
di : dummy leaf after ki,before ki+1

i=0..n
pi : probability of a request for ki
qi: probability of a request for an

element after pi and before pi+1.
w(i,j): probability of element in OPEN

INTERVAL (ki-1,kj+1), so
w(i,j)=∑k=i,.jpk + ∑k=i-1..jqk; w(1,n)=1
{find all w(i,j) in O(n2) time

k3

k5k2

k6
k4k1 d2 d5 k7

d0 d1 d3 d4
d6 d7

CS 466 Optimal Binary Search Trees Slide 3-3

The Dynamic Program

Expected cost of a search:
E[search in T] =
∑(depthT(ki) +1)pi +∑(depthT(di) +1)qi

So ..
Compute
e[i,j] = cost of optimal i,j tree

= qi-1 if j=i-1 and
= mini≤r≤j{e[i,r-1]+e[r+1,j]+w(i,j)} if i≤j

Also keep track of the root as r[i,j]
r[i+1,i] = di ; r[i,i] = ki ;
Otherwise r[i,j] determined by e[i,j]
calculation

This gives a straightforward dynamic
program, which we can do with a
loop r=i,..j and recursive calls, of
three loops for Θ(n3) time, and Θ(n2)
space.

CS 466 Optimal Binary Search Trees Slide 3-4

Improvement

Note: the loop to compute {r,e}[i,j]
goes all the way from i to j.

Is all this necessary?
Lemma: r[i,j] cannot precede r[i,j-1]

or follow r[i+1,j]. {Omit proof}

So modify the inner loop
Change “r = i..j” to “r = r[i,j-1]..r[i+1,j]”
Look at runtime; series telescopes

Theorem: The optimal binary search
tree can be determined in Θ(n2)
time and Θ(n2) space.

This is the best known algorithm,
indeed there is no known
polynomial time, o(n2) space
method.

CS 466 Optimal Binary Search Trees Slide 3-5

Good Trees in Less Space

Suppose we don’t have Θ(n2) space.
How can we get a good tree?
Greed !!!

First Attempt: Choose root as key
with greatest probability.

1/n+ε

1/n-ε

CS 466 Optimal Binary Search Trees Slide 3-6

Better Greed

Choose root to balance the weights
on either side as well as possible.
There are a few (picky) options:

MinMax: Minimizes the weight of
largest subtree

“Balance”: Choose root to make
subtree wts as close as possible

Not optimal; but perhaps, not bad.
Naïve algorithm is Θ(n2) (worst case),

but O(n) space.
How can we make it faster?

.02

.49.49

CS 466 Optimal Binary Search Trees Slide 3-7

A Faster Greed Algorithm

Given keys in order, and probs: pi, di

Let Li = probability of being left of ki

For root of tree in range [st,fin], find,
by binary search, key with Li below
and Li+1 above (Lst+Lfin+1)/2

Hence an O(n lg n) method.

Can we improve this?
Yes … note the method is linear if

you always “get lucky” with “split”
near the middle.

So … Start at with one comparison in
the middle. Then move to the “side
still in” and double your way
toward the middle, till desired
element “bracketed”, finish with
binary search.

CS 466 Optimal Binary Search Trees Slide 3-8

Runtime

Cost of discovering split point:
O(lg v), v is #keys from near end.

Thm: The algorithm runs in O(n) time.
i.e. the splits have an amortized
cost of O(1).

Proof sketch:
Try induction: T(n) ≥ αn – β lg n
Tune constants for the base cases
Basic recurrence:
T(n) ≥ T(a) +T(n-a-1) + 2 lg a {1<a≤n/2}
Substitute: T(n) =
αa-βlg(a) +αn- αa- α - βlg(n-a-1)+2lg a
We require
βlg(a)+βlg(n-a-1)+α > lg n {when a<n/2}
This is fine when a is large, α and β

have to be tuned to handle the
small values of a.

CS 466 Optimal Binary Search Trees Slide 3-9

Quality of Solutions

The approximation method is rather
good. Define:

• P = ∑ pi

• H, the entropy of a distribution, as
H(p1..pn,q0..qn) = −∑ pi lg pi+∑qi lg qi
{Note H is maximized when all
probabilities are the same}

• Copt and Capprox as tree costs
Then
Thm: H – P lg(eH/2P) ≤Copt ≤ Capprox ≤

H+2 – P
i.e. optimal and approximate tree

have costs with lg H of optimal.
Proof: Omitted

CS 466 Optimal Binary Search Trees Slide 3-10

But what it probabilities change…
or we don’t know them?

Could count accesses and update optimal
tree based on changing probabilities.

{this has been done for Huffman codes}
Or
Recall linear search and the “move to front”

heuristic. Assume list starts empty and
element put at the end the first time it is
requested

Thm (from CS 240): The cost of a sequence
of searches under the move to front
heuristic is within a factor of 2 of that of
the optimal (static) order.

Indeed
Thm: The amortized cost of a search under

move to front is at most twice the optimal
we could get if we knew the sequence and
updated the list. {Off line updates work by
swapping adjacent items}

CS 466 Optimal Binary Search Trees Slide 3-11

Splay Trees
See Goodrich and Tamassia Section 3.4

Analogy for search trees:
… when access is made perform

rotations to move requested
element to root.

Must be careful, a simple rotation
does not give the ideal result.

3 moves:
Zig-zig: abc (similarly cba)

a

b

c

c

bT1 T4

T3T2 a

T3 T4 T1 T2

CS 466 Optimal Binary Search Trees Slide 3-12

And the other two forms

Zig zag: bca (or bac)

and Zig: No grandparent

a

b

c
c

b

a

T2

T1

T3

T4 T1 T2 T3 T4

b

a T3 b

a

T1

T1 T2 T2 T3

CS 466 Optimal Binary Search Trees Slide 3-13

Splay trees:
The results

Thm: On any long enough sequence
of searches, the length of the
search path on a spay tree is at
most twice that of the optimal tree
for that sequence.

Hence:
Thm: The amortized cost of

searching in a splay tree is at most
2H + O(1).

Proofs: Omitted (see G&T)

	Optimal Binary Search TreesSections 12, 15.5, 16.2
	Optimal Binary Search Trees
	The Dynamic Program
	Improvement
	Good Trees in Less Space
	Better Greed
	A Faster Greed Algorithm
	Runtime
	Quality of Solutions
	But what it probabilities change… or we don’t know them?
	Splay TreesSee Goodrich and Tamassia Section 3.4
	And the other two forms
	Splay trees:The results

