
CS 466/666
Assignment 3

Fall 2005
Due date: Friday November 11st, 6:00pm

1. Compute the smallest proof of intersection for the sets

A1 26 27 28 29 30 73 77 78 79 91 196 206 330 352 353 364 365 384 408 426 427
A2 76 77 145 207 216 366 388 389 390 402 417 421
A3 21 24 25 26 27 28 29 77 119 120 199 298 339 350 389 408

Here’s the greedy algorithm for computing the smallest proof of intersection

e
�
 maxi { Ai[1] }

while (e < infinity)
 tmax

�
 -infinity

 for i from 1 to k do
 find the insertion rank pi of e in set Ai i.e. Ai[pi-1] < e <= Ai[pi]
 if tmax < Ai[pi] then
 tmax

�
 Ai[pi]

 j
�
 i

 endif
 endfor
 if Aj[pj] = e (i.e. all sets contain e) then
 add the k-1 equalities A1[p1]=A2[p2]=...=Ak-1[pk-1]=Ak[pk] to the proof
 e

�
 maxi { Ai[pi+1] }

 else
 add Aj[pj] > e to the proof
 e

�
 Aj[pj]

 endif
endwhile

2. In computer graphics one of the most important problems is efficiently computing which surfaces are hidden in a
3D collection of objects being rendered, either because the are part of the “back side” of an object or because another
object occludes it (i.e. blocks the view).

For this question we consider a simplification of this problem to 2D as follows. Given n non-vertical lines in the plane,
labeled L1, L2, …, Ln-1, Ln with the ith line specified by the equation y = axi + bi, we wish to find the line segments that
would be visible from a “ fly over” high above. More formally we say line Li is uppermost at a given x-coordinate u if
its y-coordinate v at that point is greater than the y coordinates of all the other lines at that x-coordinate u. We say line
Li is visible if there is some x-coordinate at which it is uppermost� intuitively, some portion of it can be seen if you
look down from “y =

���
.

i. Give a divide and conquer O(n log n) algorithm for computing the subsegments of the lines that can be seen
from infinity.

ii. Assume that only h of the n lines are visible from infinity and the remaining n-h lines are completely
occluded, give an algorithm that computes the visible subsegments in O(n log h) time. (Hint: first divide the
lines into groups of k for some value of k and compute the visible lines within each group).

3. Show that computing the maximum, median and minimum elements in a given a set of n distinct elements in
random order requires at least 2n comparisons in the worst case.

4. Give an algorithm for the problem above requiring as few comparisons as possible, in the worst case (Hint: aim
for 9n/4 comparisons).

5. Given an array of n integer values in random order, we wish to determine if it is an arithmetic progression when
viewed in sorted order. An arithmetic progression is defined to be a set of the form { a, a+b, a+2b, ... ,a+(n-1)b} for
some integers a and b. Give an algorithm to solve this problem in O(n) time.

6. Given n integers in unsorted order, consider the problem of determining if they are all different or if there is a
repeated element. Show that this takes O(n log n) time in the worst case in the comparison model. (Hint: first show
that if the relative order of each element with respect to every other is not known then an adversary can make the
algorithm fail).

