
CS 466/666, Fall 2007 due Friday Sept. 28

A. Lubiw

ASSIGNMENT 1

Do not copy from others, and acknowledge your sources.

1. [10 marks] Here are two review questions on NP-completeness. You may assume that the

Hamiltonian Cycle Problem and the Travelling Salesman Problem are NP-complete.

(i) Prove that the following problem is NP-complete: Given an edge weighted graph and a

number K, is there a cycle that visits every vertex at least once (possibly more often) and

has sum of edge weights at most K. NOTE: this differs from the standard TSP in that

the cycle may re-visit some vertices.

(ii) Prove that the decision version of TSP is strongly NP-complete meaning that it is still

NP-complete if the input numbers are encoded in unary rather than binary.

2. [5 marks] Assuming that keys can be accessed ONLY by means of pair-wise comparisons,

prove that for any implementation of the priority queue operations discussed in class (insert,

delete-min, merge, decrease-key) the amortized cost of a sequence of k operations is Ω(log k).

Recall that amortized cost is an average over the sequence of operations, and a worst case with

respect to the choice of the sequence.

3. [15 marks] Fibonacci heaps are complicated but have provably good amortized cost operations:

O(log n) for delete-min and O(1) for other operations, including the decrease-key operation.

This good behaviour for decrease-key, is the justification for Fibonacci heaps, since this is the

bottleneck in shortest path and min spanning tree algorithms. However, Fiboancci heaps do

not behave as well in practice as a much simpler self-adjusting structure called the pairing

heap. In a pairing heap, all values are stored in a single heap-ordered tree. No explicit shape

constraints are imposed on the tree. The fundamental operation is linking two trees: the

tree with the larger value at the root is added as a leftmost child of the other tree. A merge

is simply a link. Insertion is implemented as a link of a singleton tree with the main tree.

Decrease-key is implemented by cutting off the subtree rooted at that node, and linking the

resulting two trees—the cut is done even if the decrease in key value would not violate heap

order. Delete-min is implemented by deleting the root, which leaves a number of trees that

must be joined back together somehow. Here’s where the fun begins.

(i) [2 marks] Show that all operations except delete-min take worst-case time O(1). Show

that delete-min can take worst-case time Θ(n) time no matter what joining rule is used.

One simple joining rule is to use left-to-right incremental linking: T ← T1; for i = 2, . . . k do

T ← link(T, Ti).

(ii) [3 marks] Prove that delete-min implemented this way takes Θ(n) amortized time. Note

that it does not suffice to show that a single delete-min takes Θ(n) time.

The joining rule used for pairing heaps is slightly fancier and involves two passes. In the first

pass, link the trees in pairs, T1 with T2, T3 with T4, etc. If k is odd then the last tree stays



alone. In the second pass do right-to-left incremental linking.

(iii) [10 marks] Define the potential of a node with d children in an n-node heap to be

1 − min{d, [
√

n]}, and define the potential of a collection of heaps to be the sum of the

potentials of their nodes. Using this potential function prove that insert, merge and

decrease-key take O(1) amortized time and that delete-min takes O(
√

n) amortized time.

Note (not needed to solve the problem). This proof will not use the exact ordering of the

children in the two-pass join. There are orderings that can cause Ω(
√

n) behaviour, but the

particular ordering described above for pairing heaps results in an amortized cost of O(log n)

for delete-min and for decrease-key. This upper bound does not seem to be tight for decrease-

key, and in practice the behaviour of pairing heaps seems much better. An amortized lower

bound of Ω(log log n) has been proved for the decrease-key operation.

Try to do this question without looking up the literature on pairing heaps. If you do resort to

looking up the literature, be sure to acknowledge your sources.

4. [10 marks] There are sorting algorithms that beat the Ω(n log n) lower bound if operations

other than comparisons are allowed, in particular if operations on the bit representations of

the numbers are allowed. You know radix sort, which can sort n integers in the range [0, U ]

in linear time if U is nk for k a constant (i.e. the integers have O(log n) bits). More recent

results, such as fusion trees, beat the O(n log n) bound under weaker assumptions about U

and n. The model of computing that is used allows standard operations on words at unit cost

per operation. Standard operations include arithmetic, shifts, bit-wise AND, OR, etc. A word

is w bits long, and it is assumed that: (1) each input number fits in one word; and (2) n fits

in one word, which means that an index or pointer fits in one word.

(i) [2 marks] Does this seem like a reasonable model? Think about what happens if w is

fixed, but also think about whether the model reflects reality.

At the lowest level, algorithms on this model depend on the ability to pack many small values

in a single word so that one word operation essentially operates in parallel on all the values.

Given integers a1, . . . , at, of b bits each, we can pack them into one word as follows. We use

the least significant bits 0, 1, . . . , b − 1 for a1, then leave bit b as a spacing bit, then use the

next b bits for a2, etc. This way we can pack t = ⌊ w

(b+1)⌋ integers into a word of w bits. The

ith spacing bit occurs at bit position ib + i− 1.

(ii) [4 marks] Suppose that word A packs b-bit integers a1, . . . , at as above, and word B packs

b-bit integers b1, . . . , bt. Suppose that all the spacing bits are initially set to 0. Show how

to compute in constant time a word C such that the ith spacing bit (from the right) gives

the result of comparing ai to bi. Hint: step 1 is to construct a word that has 1’s in the

spacing bits and 0’s elsewhere; start by assuming this.

(iii) [4 marks] Suppose that we want the result of comparing each ai to one b-bit integer d.

Show how to construct in constant time the appropriate word B so that the solution to

part (ii) can be used.

Note. You might wonder how packing integers into one word of w bits is useful if the input



integers have w bits, but the idea is to look at only some bits of the input integers at a time.


