
CS 466/666, Fall 2007 due Friday November 9
A. Lubiw

ASSIGNMENT 3

Do not copy from others, and acknowledge your sources.

1. [10 marks] The RSA cryptosystem requires large primes chosen at random. Give a randomized
algorithm for generating a random t bit prime number. The highest order bit (the one in the
tth position) should be a 1. Analyze the expected run time of your algorithm. You will need
the Prime Number Theorem, which states that π(k), the number of distinct primes less than
k, is asymptotically k/ ln k. (You don’t need to prove the Prime Number Theorem.)

2. [10 marks] This problem is about implementing a counter using very limited space. Normally,
an n-bit register can count from 0 to 2n

− 1. Here we use randomness to count higher, with
the trade-off that the count may not be exact.

We will implement two operations, Increment and Count. Let r be the value stored in the
register. Let c be number of calls to Increment (i.e. the true value the counter should have).

(a) Consider the following implementation

Increment

toss a coin

if Heads then r <-- r+1

Count

return 2r

i. Prove that the expected value of 2r is c. Prove that the expected value returned
by Count is c.

(b) To count even further, we can use exponentiation instead. Let Count return 2r−1. Let
Count return 2r

− 1.

i. Describe how to implement Increment so that it increases r with probability 2−r.
(Hint: r coin tosses and no arithmetic.)

ii. Prove that the expected value of 2r−1 is c. Prove that the expected value returned
by Count is c.

Hints: For both (a.i) and (b.ii), you will need pc(i), the probability that the register holds
value i after c calls to Increment. For (a.i) you can write pc(i) explicitly, and plug in to the
formula for expected value, obtaining a a sum that you may wish to look up or go back to
your generating function notes for. However, for (b.ii) I suggest writing a recurrence relation
for pc(i) in terms of pc−1(i) and pc−1(i− 1), and then proving by induction that the expected
value is as required. This same approach can be used for (a.i).

3. [20 marks] The convex hull of a set of n points in the plane is the smallest convex set containing
the points. Informally, it is the polygon you get by putting an elastic band around the points.
You can see examples and read about deterministic O(n log n) time convex hull algorithms in
CLRS. This question is about a randomized incremental algorithm with expected run time

1



O(n log n). This algorithm isn’t faster than the deterministic ones, but the point is that it
generalizes easily to 3D with the same run time, which the deterministic ones don’t.

The randomized incremental algorithm picks a random order p1, . . . , pn of the points, and
adds the points in that order. Let Ci be the convex hull of p1, . . . , pi. We will store Ci as
a double linked list so that we can traverse it clockwise or counterclockwise. Initialize by
computing the triangle C3. Let q be a point interior to C3. For simplicity’s sake we will
assume that no 3 points among q, p1, . . . , pn lie on a line.

(0) for i = 4 . . n

(1) if p_i is inside C_{i-1} then C_i <-- C_{i-1}

(2) else

(3) let e be the edge of C_{i-1} crossed by the line segment q, p_i

(4) scan clockwise and counterclockwise around C_{i-1} from e to find

the edges of C_i incident with p_i

(5) construct C_i by adding these two edges and deleting the enclosed

path of C_{i-1}

(a) [4 marks] Fill in the details of step (4) and (5), and argue that the worst case time spent
by the algorithm not counting step (3) and the test in step (1) is O(n). Hint: prove that
the total number of edges added during the course of the algorithm is at most 2n.

We implement step (3) by storing (and updating) the required information. In particular, for
each point pj we store the edge e(pj) where the line segment pjq crosses the current convex
hull. If pj is inside the current convex hull then e(pj) is null. With this information, both
step (3) and the test in step (1) take constant time. To facilitate updating we also store for
each edge e of the current convex hull the set P (e) of all points pj with e(pj) = e.

(b) [2 marks] Show how to initialize the mappings e() and P () for C3 in O(n) time.

(c) [4 marks] Show how to update the mappings e() and P () when we go from Ci−1 to Ci.
Hint: for each edge that disappears from Ci−1, go through P (e).

(d) [3 marks] Find an example set of points (for general n) and two orderings of these points,
such that one ordering causes the algorithm to take O(n) time, and the other ordering
causes the algorithm to take O(n2) time.

(e) [7 marks] Do a backwards analysis to prove that the expected run time of the algorithm
is O(n log n). Hint: We need to account for the work done in iteration i to update e()
and P (). Show that this is proportional to the number of points pj , j > i, whose e()
value changes. Consider iteration i going backwards from Ci to Ci−1. A random point
among p1, . . . , pi is removed. The e() value of a specific point pj changes iff line segment
pjq crosses an edge of Ci that is removed as we step backwards to Ci−1. Compute the
probability of this.

2


