CS 466/666
Topic 2: Divide and Conquer/ Reductions
Lectures: Sept 28 & 23

Master Theorem review (CLRS section 4.3)

There are 3 parts to the Master Theorem, we need examples of each. Indeed for 2 cases
we will give new methods.

1 Easy MThm case: “balance” giving a g n term
Mergesort and Binary Search are examples.

2 Number of subproblems dominates:
Number multiplication in O(n'**") (problem p844 ex 30-1 and Strassen Matrix

Multiplication in Om**")(  Section 28.2) are examples.
Do both
3 Size of “fix-up” dominates.

Here is a chance to build on the Strassen method and develop a couple of reductions.
Transitive closure of a directed graph; a simple O(n®) method is given on p633. It is a
simple iteration, though one cold possibly argue for dynamic programming.

The text also discusses it as “min, plus” matrix multiplication ... but note these
operations don’t work in “Strassen”.

Go back and observe that by squaring an adjacency matrix, we get in position (i,j) the
number of ways of getting from i to j in 2 steps. If we make the diagonal of the matrix all
1’s, this gives the number of ways of going from i to j in “at most 2 steps”.

If we keep squaring, say |_lg n | times we will get non zero values in location i,j if there is
a path from 1 to j. There is a problem that this could be a very large number; but if we
replace all non zeros by 1’s after each squaring (including the last) we never have values
in the answers greater than n

So we can use Strassen for (Boolean) matrix multiplication and get an O(n**'"1g n)
method.

Interestingly we can get rid of this Ig n term.

- Getrid of the issue of cycles by finding the strongly connected components of the
graph, collapsing each into a single node. (The answer to the original problem is
easily recovered) Note this phase takes O(n?) time and can substantially reduce
the problem size, so is probably a very good idea in practice)

- Reorder these nodes so that edges go from lower to higher numbered nodes (ie
topological sort, again quadratic time)

- Let G denote the adjacency matrix of a graph and G* the adjacency matrix of the
transitive closure. Then, we have manipulated the problem so that G is an upper
triangular Boolean matrix.

G= ('8‘ %) where A and B are uppertriangular with 1’s on the diagonal. A deals

with the edges in the first half of the graph and there are no “back edges”, so indeed



A* goes in the top left quarter of G*; similarly B* goes in in the lower right.
Connections from the top to the bottom of the graph are found by “taking a few steps
in the top”, then moving from top to bottom according to C, then “taking a few steps
in the bottom”. This means
A* A*CB*
o= AP
So, G* can be found with 2 n/2 by n/2 transitive closures followed by 2 Boolean
matrix multiplications. So
T(n) = 2T(0/2) + O(n**") (using Strassen).
From the Master Theorem, we have reduced transitive closure to Boolean matrix
multiplication as long as our Boolean matrix multiplication is Q(n*"), i.e. we have an
O(n**') transitive algorithm assuming we can do arithmetic on lg n bit numbers in
constant time.
Curiously the reduction works in the other direction. Suppose we want to multiply the
Boolean matrices A and B. Consider the digraph whose adjacency matrix is
I A O
H= | B | ... What is this graph? It is tripartite, with edges going from the first
I

third to the second and from the second to the third. Finding the transitive closure is
simply a matter of filling in the appropriate values in the top right corner (where the 0 is).
This is easily seen to be AB, i.e. finding the transitive close (by whatever means we like)
on a 3n node graph can be used to multiply two arbitrary Boolean matrices.



