
CS 466/666 
Topic 2: Divide and Conquer/ Reductions 

Lectures: Sept 28 & 23 
 
Master Theorem review (CLRS section 4.3) 
 
There are 3 parts to the Master Theorem, we need examples of each. Indeed for 2 cases 
we will give new methods. 
 
1 Easy  MThm case: “balance” giving a lg n term 
Mergesort and Binary Search are examples. 
 
2 Number of subproblems dominates:  
Number multiplication in O(n1.58..) (problem p844 ex 30-1 and Strassen Matrix 
Multiplication in O(n2.81..)(  Section 28.2) are examples. 
Do both 
 

3 Size of “fix-up” dominates. 
Here is a chance to build on the Strassen method and develop a couple of reductions. 
Transitive closure of a directed graph; a simple O(n3) method is given on p633. It is a 
simple iteration, though one cold possibly argue for dynamic programming. 
The text also discusses it as “min, plus” matrix multiplication … but note these 
operations don’t work in “Strassen”. 
Go back and observe that by squaring an adjacency matrix, we get in position (i,j) the 
number of ways of getting from i to j in 2 steps. If we make the diagonal of the matrix all 
1’s, this gives the number of ways of going from i to j in “at most 2 steps”. 
If we keep squaring, say ⎡lg n⎤ times we will get non zero values in location i,j if there is 
a path from 1 to j. There is a problem that this could be a very large number; but if we 
replace all non zeros by 1’s after each squaring (including the last) we never have values 
in the answers greater than n 
So we can use Strassen for (Boolean) matrix multiplication and get an O(n2.81..lg n) 
method. 
Interestingly we can get rid of this lg n term. 
 

- Get rid of the issue of cycles by finding the strongly connected components of the 
graph, collapsing each into a single node. (The answer to the original problem is 
easily recovered) Note this phase takes O(n2) time and can substantially reduce 
the problem size, so is probably a very good idea in practice) 

- Reorder these nodes so that edges go from lower to higher numbered nodes (ie 
topological sort, again quadratic time) 

- Let G denote the adjacency matrix of a graph and G* the adjacency matrix of the 
transitive closure. Then, we have manipulated the problem so that G is an upper 
triangular Boolean matrix. 
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CAG 0  where A and B are uppertriangular with 1’s on the diagonal. A deals 

with the edges in the first half of the graph and there are no “back edges”, so indeed 



A* goes in the top left quarter of G*; similarly B* goes in in the lower right. 
Connections from the top to the bottom of the graph are found by “taking a few steps 
in the top”, then moving from top to bottom according to C, then “taking a few steps 
in the bottom”. This means 
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So, G* can be found with 2 n/2 by n/2 transitive closures followed by 2 Boolean 
matrix multiplications. So 
T(n) = 2T(n/2) +  O(n2.81..) (using Strassen). 
From the Master Theorem, we have reduced transitive closure to Boolean matrix 
multiplication as long as our Boolean matrix multiplication is Ω(n2+ε), i.e. we have an 
O(n2.81..) transitive algorithm assuming we can do arithmetic on lg n bit numbers in 
constant time. 

Curiously the reduction works in the other direction. Suppose we want to multiply the 
Boolean matrices A and B. Consider the digraph whose adjacency matrix is 
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H  … What is this graph? It is tripartite, with edges going from the first 

third to the second and from the second to the third. Finding the transitive closure is 
simply a matter of filling in the appropriate values in the top right corner (where the 0 is). 
This is easily seen to be AB, i.e. finding the transitive close (by whatever means we like) 
on a 3n node graph can be used to multiply two arbitrary Boolean matrices. 


