
CS 466/666
Topic 2: Divide and Conquer/ Reductions

Lectures: Sept 28 & 23

Master Theorem review (CLRS section 4.3)

There are 3 parts to the Master Theorem, we need examples of each. Indeed for 2 cases
we will give new methods.

1 Easy MThm case: “balance” giving a lg n term
Mergesort and Binary Search are examples.

2 Number of subproblems dominates:
Number multiplication in O(n1.58..) (problem p844 ex 30-1 and Strassen Matrix
Multiplication in O(n2.81..)(Section 28.2) are examples.
Do both

3 Size of “fix-up” dominates.
Here is a chance to build on the Strassen method and develop a couple of reductions.
Transitive closure of a directed graph; a simple O(n3) method is given on p633. It is a
simple iteration, though one cold possibly argue for dynamic programming.
The text also discusses it as “min, plus” matrix multiplication … but note these
operations don’t work in “Strassen”.
Go back and observe that by squaring an adjacency matrix, we get in position (i,j) the
number of ways of getting from i to j in 2 steps. If we make the diagonal of the matrix all
1’s, this gives the number of ways of going from i to j in “at most 2 steps”.
If we keep squaring, say ⎡lg n⎤ times we will get non zero values in location i,j if there is
a path from 1 to j. There is a problem that this could be a very large number; but if we
replace all non zeros by 1’s after each squaring (including the last) we never have values
in the answers greater than n
So we can use Strassen for (Boolean) matrix multiplication and get an O(n2.81..lg n)
method.
Interestingly we can get rid of this lg n term.

- Get rid of the issue of cycles by finding the strongly connected components of the
graph, collapsing each into a single node. (The answer to the original problem is
easily recovered) Note this phase takes O(n2) time and can substantially reduce
the problem size, so is probably a very good idea in practice)

- Reorder these nodes so that edges go from lower to higher numbered nodes (ie
topological sort, again quadratic time)

- Let G denote the adjacency matrix of a graph and G* the adjacency matrix of the
transitive closure. Then, we have manipulated the problem so that G is an upper
triangular Boolean matrix.

⎟
⎠
⎞⎜

⎝
⎛= B

CAG 0 where A and B are uppertriangular with 1’s on the diagonal. A deals

with the edges in the first half of the graph and there are no “back edges”, so indeed

A* goes in the top left quarter of G*; similarly B* goes in in the lower right.
Connections from the top to the bottom of the graph are found by “taking a few steps
in the top”, then moving from top to bottom according to C, then “taking a few steps
in the bottom”. This means

⎟
⎠
⎞⎜

⎝
⎛= *0

**** B
CBAAG .

So, G* can be found with 2 n/2 by n/2 transitive closures followed by 2 Boolean
matrix multiplications. So
T(n) = 2T(n/2) + O(n2.81..) (using Strassen).
From the Master Theorem, we have reduced transitive closure to Boolean matrix
multiplication as long as our Boolean matrix multiplication is Ω(n2+ε), i.e. we have an
O(n2.81..) transitive algorithm assuming we can do arithmetic on lg n bit numbers in
constant time.

Curiously the reduction works in the other direction. Suppose we want to multiply the
Boolean matrices A and B. Consider the digraph whose adjacency matrix is

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

I
BI
OAI

H … What is this graph? It is tripartite, with edges going from the first

third to the second and from the second to the third. Finding the transitive closure is
simply a matter of filling in the appropriate values in the top right corner (where the 0 is).
This is easily seen to be AB, i.e. finding the transitive close (by whatever means we like)
on a 3n node graph can be used to multiply two arbitrary Boolean matrices.

