
Page 1

CS 466 Computational Geometry Slide 4-1

Computational Geometry 
Chapter 33 

Interesting area of algorithmics:
Applications in .. Graphics, VLSI, etc.
Cover a few basic problems (in 2 D)
Simple problem: 

In 1D, finding two closest point is 
trivial; in 2D?
In 1 D, bounding the region of 
values (Max,Min)is easy; in 2D 
“convex hull”

Sharpen algorithm design tools and
Introduce a few basic techniques in 

Euclidean space
Major problem (hassle) getting 

arithmetic right … or close enough

CS 466 Computational Geometry Slide 4-2

Line Segments

Lots of definitions:
Convex combination of two points p1,p2: any 

point on the line segment, p1p2 , joining 
them.

p1p2 a directed segment, a vector if p1 origin

So, a few small problems on line segments:
Use only +, - , *, no ÷ or trig functions; we 

want exact (correct) answer
Cross product: p1 × p2 = x1y2  - x2y1 (= - p2 × p1

Cross product = 0 ⇒ line segments 0 p1 and 
0 p2 colinear.

Cross product > 0 ⇒ +ve angle (<π) from 0 p1
to p2 (counterclockwise)

Similarly Cross product < 0 ⇒ -ve angle 

p1

p2

CS 466 Computational Geometry Slide 4-3

Extending

If the lines don’t start at the origin ..
p0p2 relative to p0p1.
Compute (p1 – p0)×(p2 – p0)

Consecutive segments: Similarly to 
check p0p1p2 involves a left or right 
turn, compute
(p2 – p0)×(p1 – p0)

Do two segments intersect: Check 
whether each “straddles” line of 
the other. (must check both ways, 
plus boundary condition)

Straddles: one end on one side, one 
on the other.

.. Several lines of code

(ok .. That was the “boring stuff”)

CS 466 Computational Geometry Slide 4-4

The Sweep Line Approach
Do any segments intersect?

Given a set of n lines segments, do 
any of them intersect? If so find 
some or all.

There could be Θ(n2) intersections, 
but we’ll stick to “do any 
intersect”? 

General approach: 
Consider a vertical line, sweeping 

across the segments (left to right).

At each “event point” (end of a segment)
update the data structures 

and report interesting events (like a 
discovered intersection)



Page 2

CS 466 Computational Geometry Slide 4-5

Assumptions

Assume for ease of presentation:
No vertical line segment. Trivial fix
No three line segments intersect at a 

single point. Method needs slight fix.

At position x of sweep line, segments 
s1 and s2 are comparable if both 
intersect the sweep line, and s1 is 
above s2 , s1 >x s2.

As sweep line moves: update
• Sweep line status (relationship among 

objects, e.g. vertical order)
and

• Event point schedule (when to do the 
next thing, could be much more complex 
than our simple queue)

CS 466 Computational Geometry Slide 4-6

Sweep Line Status

Retain total order, T, the vertical 
order of the segments “in play” 
with operations:

Insert(T,s): insert segment s into T
Delete(T,s): delete segment s from T
Above(T,s): return segment 

immediately above s, if any
Below(T,s): return segment 

immediately below s, if any

All can be done in O(lg n) time with a 
balanced search tree (e.g. AVL tree)

CS 466 Computational Geometry Slide 4-7

Segment intersection

T ← Ø
Sort endpoints of S by x-coord (tie protocol: 

inserts first, lower points first)
for each endpoint p 

do 
{ if p left endpoint of s

then { Insert(T,s)
if (Above(T,s) & intersects s)

or (Below(T,s) & intersects s)
then return true}

if p right endpoint of s
then { if (Above(T,s) & Below(T,s))

& (Above(T,s) intersects Below(T,s))
then return true
Delete(T,s)}

}
return false
[Overloading above/below as Boolean/segment]

CS 466 Computational Geometry Slide 4-8

Runtime and Correctness

Runtime is immediate: O(n) basic 
operations each taking O(lg n) time

Correctness:
The algorithm exhibits a crossing 

pair if it reports there is one.
If there is one, consider leftmost:
Vertical order of segments “in play”, 

is correct up to first event after 
crossing.

Check for crossings at each event.
Care has to be taken to handle 

several crossings at same x 
coordinate.



Page 3

CS 466 Computational Geometry Slide 4-9

Convex Hull

Smallest convex polygon containing 
the set of points

There are many O(n lg n) methods
We will look at one based on a 

rotational scan

CS 466 Computational Geometry Slide 4-10

Graham Scan Convex Hull

S is an initially empty stack
p0 ← lowest point (if tie leftmost of these)

<p1,p2,…pm> are remaining points 
sorted in counterclockwise
direction by polar angle around p0
(if tie keep only farthest)
{this can be done in O(n lg n) time}

Push(p0,S)
Push(p1,S)
Push(p2,S)
for i← 3 to m do

{ while angle Next-to-top(s), 
Top(S), pi makes nonleft turn 
do Pop(S)
Push(pi,S)

}
return S

CS 466 Computational Geometry Slide 4-11

Closest Pair of Points

Finding the closest pair of points .. 
In 1 dimensions, trivial: sort and 

compare difference between 
consecutive values

In two dimensions, much more 
interesting

Our solution .. A classic divide and 
conquer

δ

?

CS 466 Computational Geometry Slide 4-12

The Algorithm
Preamble: Sort points by x coordinate, 

and also by y coordinate (point in 
each list retains reference to 
position in the other)

Divide: Find closest pair in first half by 
x coordinate, and in second half. Let 
δ be the smaller distance (retain 
these end points).

Conquer: The closest pair is either 
that pair or a pair with one value in 
the left half and one in the right, 
each within δ of the splitting line

δ

δ



Page 4

CS 466 Computational Geometry Slide 4-13

Continuing to Conquer

2 Issues:
• Get the points in the strip, in sorted 

order by y coordinate. Scan both x 
sorted and y sorted lists to do this. 
(this takes O(n) and avoids a sort)

• Consider point p in the strip. How 
many can be at its height or lower 
and vertical distance at most δ? 
Answer: at most 4 on the other 
side, but it is easier if we say 7 (4 
on other side, 3 on its)

• Scan elements in the strip by y 
coordinate. Find distance between 
each and the following 7. Take 
closest pair if they have distance 
less than δ.


