
CS 466/666  
Topic 7: NP-Completeness and Dealing with it 

Lectures: October 23 and 27 
  
We have proved that SAT is NP-Complete. Indeed, if you look at the proof, you see that 
only a special case of SAT is used, namely the product (and) of sums (or) of literals 
(variables and their negations). This Π Σ (literals) form is called conjunctive normal 
form. (Similarly, the Σ Π (literals) form is called conjunctive normal form) One can 
convert an arbitrary Boolean formula to either of these forms, but it may result in a 
dramatic (exponential) increase in size. The first question we ask, though, is how much 
more we can restrict the form of a Boolean expression and still have its Sat problem NP-
complete. Curiously, 3 literals per clause is as hard as the general problem. We can 
reduce general CNF-SAT to CNF-3SAT (which we will simply call 3-SAT). Consider an 
arbitrary CNF expression Π Ci, where Ci = (ai1∨ai2∨ … aik) and aij denotes a literal. The 
reduction is quite straightforward and causes only a linear increase in size. 
Write a clause C = (a1∨a2∨ … ak) as (a1∨a2∨ b1) Πi=1,..k-4 (¬bi ∨ai+2∨ bi+1) (¬bk-3∨ak-1∨ak). 
Here the b’s are new variables not used anywhere else in the construction. If C is made 
true by assigning aj true, then the new form is made true by making aj true, all bi that 
occur earlier than the clause where aj are made true and all that come later than this 
clause are made false. 
So how about just 2 literals per clause? Things become dramatically easier: 
2-Sat is easily solved in polynomial time. Simply make an arbitrary assignment of one 
variable. This satisfies some clauses and forces the assignment of other variables if 
certain other clauses are to be satisfied. The process of forced assignment and clause 
elimination continues until we either eliminated some clauses and no remaining variables 
are forced, or we have a contradiction (the same variable is forced to be true in one clause 
and false in another). In the former case, we keep the assignments and repeat the process 
until no clauses are remain unsatisfied. In the latter case, our tentative assignment does 
not work, so we must make the opposite one … which goes through a similar forcing 
process and leads either to the conclusion that the expression is not satisfiable or finds a 
satisfying assignment. It is not hard to eliminate a single variable in O(n), but indeed then 
entire process can be done in linear time. 
 
Input: CNF expression of n clauses each contains 2 literals 
(A literal is a Boolean variable or its negative) 
 
Output: A satisfying assignment of variables or, essentially, a proof if these are none. 
 
Note: There are most 2n variables  
 
Data Structures: 
For each variable xi create  

doubly linked list of clauses containing xi (without ¬) and  
doubly linked list of clauses containing ¬ xi. 

 
Each clause representation has 2 sets of flags to give status of each variable (T, F,?) and 
the clauses (T,?) 
 
Algorithm: 



Choose an arbitrary variable xi from a clause still unsatisfied.  Simultaneously (e.g. you 
could alternate steps) run 2 processes one makes tentative assignment xi =T, the other 
makes xi =F, (Data structures marked independently by the two) 
 
All clauses made true by the assignment are flagged as such. For all clauses in which the 
negation of the assigned value occurs, the other literal of that clause is forced to hold.  
Continue with these forced assignments (successively) until either: 
 

i) All assignments have been made; hence every clause is satisfied or has no 
assignment to either term. 

or 
 
ii) We discover some variable is forced to both T & F.  Hence a contradiction to 

original assignment. 
 
Case (i): Halt the other process and run through it again undoing all its markings.  (This 

takes same amount of time as making assignment).  Assignments made by the 
properly terminating process are “made permanent”.  This leaves us with a 
subset of clauses & variables, all these remaining clauses in original form.  
The time taken is the same for each process; the number of clauses removed is 
proportional to time taken, as a clause is inspected at most twice by properly 
termination process.  Reapply procedure to remaining clauses starting with 
some remaining variables (dual) assignment. 

 
Case (ii) Terminating assignment leads to contradiction.  Let other assignment process 

continue to completion.  Satisfaction if it finds one. 
 
Coping with NP-completeness 
 
Given a problem:  Look for a solution by mapping to a known problem or type of 
problem. 
 
Don’t see a fast solution; perhaps it is NP hard. 
 
Reduce NP hard problem to new one – but be we careful 
 
In doing so, make sure your problem with all its special constraints is NP Hard….and not 
a potentially easier special case (e.g. 2-SAT). 
 
Now you are stuck - try a “heuristic” of some sort, may get (optimal) solution or may 
not.  
 
One notion is to get an approximation algorithm with a guaranteed approximation ratio. 
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⎝
⎛

*c
c , ⎟

⎠
⎞

*c
c  where  c=our solution cost, c* = optimal (unknown) 

The idea of the maximum is that the ratio is greater than 1 whether we have a 
maximization or minimization problem. 
 
Ideal Situation: 
 



Approximation scheme: taking into account ε, and getting a (1+ ε) ratio. 
 
Polynomial time approximation scheme: a method that for any fixed ε >o, scheme runs in 
polynomial time (e.g.  n1/ ε is ok here) 
 
But really we want 
Fully polynomial time approximation scheme: runtime polynomial in both 1/ε and n, 
e.g.  O((1/ε)2 n3). 
 
 
We will see a variety of problems/solutions. 
 
Generally methods are simple. Bounds are pessimistic in terms of typical behaviour. 
Once we have an approximate solution, we may be able to find an even better solution 
and so a better guarantee for the particular case. 
 
Vertex cover: Given undirected graph G=(V,E) and subset of vertices V' ⊆ V such that 

edge (u,v) uεV' vεV' or both.  Size of vertex cover (# nodes) is issue. ∀
 
Problem find minimum size Vertex Cover: Given a graph, find smallest set of vertices so 
every edge incident with at least one of these nodes. 
 
Problem is NP-hard: Reduce Clique problem to it. 
 
Approx_VC (G) 
C ←Ø 
E'←E 
While E'  Ø ≠
do  { choose arbitrary (u,v) in E' 

C←C  {u,v}  {ie. take both!!!) ∪
Remove for E' every edge incident with u or v. 
} 

 
Return C 
 
Ok, it’s a silly method but.. 
 
Theorem: Approx_VC is a polynomial time 2-approximation algorithm. 
Proof:  With care the method is linear. 
Let A denote set of edges chosen 
Every vertex cover, including C*, must contain at least one endpoint of some edge in A 
Hence *   2C A≥ = C  
 
So we have a 2-approximation. Interesting idea, we don’t know C*, but can still argue 
about it. And note the method can be as bad as the bound states. 
 
Traveling Salesman Problem: 
 
Given complete undirected graph G with nonnegative costs on edges, c(u,v). Find the 
Hamiltonian cycle of minimum length. 



{c(A) will denote cost of our approximation A, c(A) = ∑
∈Avu

vuc
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),(   

The problems are both NP-hard: To prove Hamiltonian cycle is NP-complete reduce from 
VC. This is an interesting proof using an innovative construction (see CLRS). Showing 
TSP is NP-hard is eay. Reduce Hamiltonian cycle to TSP {HC on unweighted graph → 
make complete graph by connecting edges weight 1 “nonedges” weight 2.  Original has 
HC iff new weighted graph has tour of length n}  
 
Interesting observation:  In reduction, give edges weight 0, non edges weight 1.  Then HC 
iff tour of length 0.  So no Polytime approximations algorithms unless P=NP. If you feel 
weights of length 0 are a “cheat”, give edges weight 1 and non edges weight 2n. This 
makes the encoding still polynomial in the original size, indeed O(n3) bits where n is the 
number of nodes in the graph. (n bits for each of the non edges.) Now any deviation from 
a Hamiltonian circuit gives a path length exponential in n.  
 
In many situations, however, we can add a constraint, the triangle inequality:  c(u,w) ≤ 
c(u,v +c(v,w)  
 
Fact: TSP NP-hard even with triangle inequality {as in original reduction above from 
HC} 
 
Approx_TSP_2MST 
Find a minimum spanning tree of the graph.  Tour is given by depth first search order of 
the tree (and return to start node) 
 
Why is this a 2-Approximation: 
 

1) Let C(T) denote sum of weights of tree edges C(H*) the cost of optimal TSP. 
C(A) cost of our approximation 

 
Note H* with any edge removed is a tree so: 
C(H*) ≥C(T) 
 

2) Consider a “full walk” of the MST, i.e. follow each edge in both directions 
- as we go to a new node 
and 
- as we return after recursive call. 
 

Then cost of full walk = 2C(T) 
 
But over approximations cost is ≤ cost of full walk as we back up we may shorten the 
path by triangle inequality, hence we have a 2 approx. 
 
Fact: It can be that bad. 

n 

1 

 
All edges indicated have length 1. 
 



All missing edges have length inferred by triangle inequality 
Optimal tour clearly length n. 
 
Choose an unfortunate MST (as per heavy lines). Tour starts at 1 then covers bottom then 
top of each vertical line ending at node n. This has cost 3n/2 – 2. The return to 1 costs 
n/2, for a total of 2n-2. 
 
Can we do better? 
 
Key idea of 2-MST was to get a “cheap”  subset of the edges on which you can do a tour. 
 
New Idea: Eulerian tour (recall Bridges of Könnigsberg). Let G be any connected 
multigraph (maybe more than one edge (u,v)) in which every node is of even degree. 
Then it is possible to start at an arbitrary point and take a walk traversing every edge 
exactly once, returning to the start point. Indeed the algorithm to do this is very easy. 
 
Algorithm Euler-Tour:  Start anywhere, at each point go to a new node if possible, 
otherwise take a new edge to an old node.  This must return to start point, but may miss 
some edges; “splice” them in.  E.g. if there is an unused edge at v (and v has been visited) 
after first visit to v take a formerly unused edge from v, this walk uses formerly unused 
edges and returns to v.  Pick up old tour from that point. 
 
Observe: Our “2 copies” of MST was such a multigraph. 
 
How do we get a cheaper Eulerian graph? 

1) Find MST. This is the cheapest connected graph. 
 

2) Consider nodes of odd degree in MST (they can use 1 more edge each). 
 

3) Find Minimum Weighted Matching on nodes of odd degree. 
[Pair these nodes so some of the chosen edges are minimized. This can be done in 
O(n2.5) time, though the method is sophisticated] 
 

Do Eulerian tour on multigraph of MST plus MWM. Take “shortcuts”? 
 
Cost: 1)  C(MST) ≤ C(Ho* )  
2)  Consider the odd degree nodes we used for matching.  Let Ho* denote optimal TSP 
tour on these nodes and Mo is the matching cost.  Consider every second edge of Ho* 
(there are 2 choices). Mo is at most the cost of either of these (as they are matching) so 
Mo ≤ C(Ho* )/2  
 
But the TST on a subset of nodes costs at most as much as the TSP on all. 
So from 1) and 2) and our Eulerian tour with shortcuts  
C(A) ≤ C(MST) + Mo 
 ≤ C(H*) +C(H*)/2 
 ≤ 3C(H*)/2 
 
Fact:  Our approximation can be this bad 
 



n 

1 

 
Consider essentially the same “ladder” example, except edges (2i.2i+1) also have length 
1 
Choose the (unfortunate) MST as the path from node 1 to node (length -1).  Then the 
only nodes of odd degree are 1 and n (distance n/2). Our approximation method gives a 
tour of length  3n/2 - 1 instead of n 

n n

 
Other approaches to TSP 
Nearest Neighbour approach to extending path. That is, at each step extend the path to the 
nearest unvisited node. At the end, we must return to the start node, 
This works reasonably in “practice”, but can give an approximation ratio, ρ, of (lg n)/3.  
The bad case occurs when the optimal is to simply go around a circle in unit steps. 
Unfortunately, we again make bad choices when given several edges of the same length. 
 
Construction: The base case, F1: 

 1   1  

F1 
 1  

 
In general, Fi+1: 

 1   1 Fi+1 

Fi 
Fi 

 Li   Li  

 
 
Choosing the Li  to be the largest permitted by the triangle inequality so that we take these 
edges, we can force L1 = 2 and Li = (6i2i + 8 2i+ (-1)i -9)/9. This gives the desired ratio. It 
can be shown that the method can produce no worse result. 
 



 
 
Another approach is Nearest Insert, that is to start with a subtour and add in the cheapest 
new node. This gives  ρ ≤ 2. 
Often the TSP to be solved is actually Euclidean distance in the plane. In such a case one 
can start with ant tour (even nearest neighbour) and improve it by detecting whether any 
edges cross. So if a pair of edges, say AD and BC crossed, them by opposing pairs of side 
edges. It can be shown that one of the choices will produce a single shorter cycle tour, 
while the other will give two disjoint cycles. 
 
 
Subject Sum Problem 
 
Given      and t where  S ={x1,..., xn}  x i , t  positive integers
Decision problem:  Is there a subset of S with sum t? 
Optimization problem:  Find subset of S with sum as close as possible to t but no larger. 
{Application t is a capacity (e.g. weight) and we are to carry as much as possible without 
going over.} 
 
Related problem … generalization is knapsack problem where we have values {vi} and 
weights {wi} and must maximize value while keeping weight below a threshold. 
 
Observe that the “natural” greedy approach of the knapsack problem would be to focus 
on items with “high unit value”,  i.e. .  With the subset problem these unit values 
are all 1.  A natural heuristic may be to take some large items and then use the small ones 
to see how close to full we can come. 

 v i / wi

 
In any case: 
Theorem: Subset sum (decision problem) is NP-complete.   
The proof is by reducing vertex cover to subset sum.   

i). Trivially subset sum is NP 
ii). We reduce from 3-CNF 

Given variables       x1...xn

Clauses   C1...Ck   each with 3 literals. 
2 simplifying assumptions that do not change the worst case complexity: 



- No clause has variable and negation (clearly we can remove clause  and  the 
other variable) 

- Each variable in at least 1 clause (otherwise we can ignore it) 
 
Construction 
 2 numbers in S for each    x i

 2 numbers in S for each     Cj

We’ll use base 10, and n+k digit  #’s. Label each digit position by a variable or a clause  
 

- The target, t, has 1 in each variable digit and 4 in each clause digit. 
- For each xi  we have vi  and  ′ v i ,  each has a 1 in digit position xi  and  0  in all 

other xj positions. 
 If    x i  is in Cj then position Cj is 1 in  v i .   
 If  ¬  x i  is in Cj then position Cj is 1 in vi'.  All other clause digits are  0  

(Note:  all   v i, ′ v i   are unique in  S) 
- For each clause    Cj  there are two integers Sj and Sj' in S. 

 All digits are  0  except the one labeled by   Cj   
    Sj  is 1 in    Cj

    Sj' is 2 in    Cj

 
 These are “slack” variables that can get the digit position, labeled by the clause up 
to 4. 
We refer to the text for the formal details of why the construction works and an example. 
 
Approximating Subset Sum:  We are aiming for a fully polynomial time approximation 
scheme, so we start with an (exponential) algorithm to find the optimal solution.  
 
If L is a list of positive integers and  x be another positive integer.  L+x is the list with 
each value increased by x. 
{so  L = <5,6,7>  x = 2  then  L+x = <7,8,9>} 
 
Similarly this notation applies to sets, indeed we will represent our sets as lists in 
increasing order.   Hence we can have the linear time procedure, Merge-Lists  , that 
merges list L  and    ′

(L, ′ L )
 L  into  increasing order. 

 
A procedure for subset sum is given by 
 
Exact-Subset-Sum (S,t) 
 n←׀S׀ 
 L0← <0> 
 for i←1 to n do {Li←Merge_Lists(Li-1, Li-1+xi); remove values >t from Li} 
 return the largest value from Li 

 
 
The idea is simple; we keep track of every possible set that is not too large.  {See text 
section 35.5 for example}.   { } { } { } { }10,9,6,5,4,1,0  ,5,4,1,0  ,1,0  ,5,4,1 321 PPPS == . 
 



The method is clearly exponential in general, but if t is small (polynomial in ׀S׀) then it is 
polynomial. 
A  fully polynomial time approximation scheme:  The key idea is to keep the size of   
down to a reasonable size by “trimming” out values that are close to ones we retain.  
Hence we don’t miss the optimal by too much. 

 Li

 
Trim L by δ means remove as many elements as possible, giving  ′ L ,  so that for every  y  

removed, there is still a 
  
z ≤ y  in  ′ L   so  y

1+ δ
≤ z ≤ y.  Note this removal of a  y  

guarantees there is an “acceptable”  z  that is not too much worse. 
 
Example from text at  δ = 0.1 
 

  

L = 10,11,12,15,20,21,22,23,24,29

′ L = 10,12,15,20,23,29
 

 
Clearly we can give a δ trim in linear time; call the procedure Trim(L,δ). So, the idea is 
clear, but if we trim by δ on every round the approximation will get worse.  Perhaps by 
an δ each time so the ratio goes to  1+ δ( )n

.  We will use   ∈ / 2n  each time for the desired  

  ∈ -approximation (i.e. C* ≤ C(1+ ∈)). 
 

  

Approx _subset _ sum(s, t,∈)
     n ← s

     L0 ← 0

    for   i ← 1  to   n
            do{Li ← Merge _Lists(Li−1,Li−1 + xi )
                 Li ← Trim(Li ,∈ /(2n))
                 remove from  Li  every element >  t
                }
return maximum value in  Ln

 

 
See text for example on  L = <104,102,01,101>  with  t = 308  and  ∈ = .20,  so   
δ = .20/4 = .05 
 
Theorem:  Approx-Subset-Sum is a fully polynomial-time approximation scheme for the 
subset sum problem. 
 
Proof:  There are two issues runtime and quality of solution.  First consider quality of 
solution. 
 
When      is trimmed we introduce a relative error of at most  Li

  ∈ / 2n over and above previous error}  { .  Hence by induction in number of steps 
 

 1+ ∈ / 2n( )− n
y* ≤ z ≤ y *  



 
where  y*  denotes the optimal solution so 
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Now consider the size of a list: 
Ratio of two consecutive values z and  ′ z ,   )2/1('/ nzz ∈+>  
And values range from 1 to t.  Hence number of values is at most   

.  and square)most (at  size problemin                            
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Note: use  

  

ln(1+ x)    = x −
x2

2
+

x3

3
−

x4

4
...

and   x
1+ x

= x − x2 + x3 − x4...

so   x
1+ x

≤ ln(1+ x) ≤ x
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