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Return to Coping with NP-Hard Problems 
We will briefly discuss two approaches to handling NP-hard optimization problems, in 
addition to approximations with guaranteed bounds.  There are 

i)  randomization (see section 35.4 of CLRS) and 

ii) parameterization (often we face NP-hard problems with two parameters, it may be 
possible to solve them in time linear in one, though exponential in the other). 

Randomization  

First consider randomization and the idea of a randomized ρ(n) approximation algorithm 
that has an expected approximation ration of  ρ(n)  (or better)  for all inputs.  A key point 
here is that the method should be expected to work well, on any input.  We illustrate the 
idea by considering a very simple example:  Max-3-CNF satisfiability.  That is to satisfy 
the maximum number of clauses in a 3-CNF expression. 

A natural approach would be to choose the literal that occurs most often and set it to true.  
Another idea would be to find maximum difference in number of occurrences of    i   and  

  i  over all values of i; then make a “wise” assignment.  These ideas tend to work well, 
but bad cases can be constructed.  A reasonable 

x
¬x

baseline for further improvements can be 
constructed by making a random assignment to each variable, this leads to an 8.7 
approximation.  The result also tells us 7.8 of the clauses in any 3-CNF expression can be 
satisfied. 

Proof:  Let       Yi = I{clause  i  is satisfied}

  

i

= [Yi∑ ]
= 7 / 8 = 7m/ 8∑

There are 3 literals in clause i, so a random assignment sets the clause to true, with 
probability at least 7/8 (if a variable and its negation both occur in the same clause, the 
clause must be true).  So if Y is the number of the m clauses satisfied: 

  
E[Y] = E[ Y∑ ]

Given this baseline one can try modifications in the hope of making improvements.  
Remember that on any given input, what you care about is getting a good answer in the 
time you have available.  

 

Parametized Complexity 

Many NP-complete decision problems, and NP-hard search problems, are expressed in 
terms of more than one parameter. For example, we could be asked whether an n node 
graph has a clique of size k. Although the problem is NP-complete if k is arbitrary, it is 
obvious the problem can be solved in O(nk) time by brute force. There are also cases in 



which O(nc 2k) or even O(nc + 2k) solutions exist. This parameterized complexity point of 
view can be very useful and lead to a guarantee of an exact solution in time polynomial 
(perhaps even linear) in the size of the input plus an exponential term in a much smaller 
parameter. Formally we say a problem is fixed parameter tractable if there exists a 
solution that runs in time O(f(k) nc) where n is the input length, k is a parameter supplied 
in the problem and c is a constant. 

It quickly follows that if an optimization problem in NP has a fully polynomial time 
approximation scheme, then it is a fixed parameter tractable. (Simply get a (1+1/k)  
approximation, this guarantees the error so small that it must be the optimal solution)  

We will look at only one example, the vertex cover problem, but see an approach that has 
been applied in many cases. So, we are given an n node, e edge graph and asked for a k-
vertex cover. 

The first phase (called kernelization) is simply a matter of scanning the entire graph and 
reducing the problem to one of size that depends only on k. 

So, for the problem at hand, we observe that for any given node, either it or all its 
neighbours must be in a vertex cover. Hence, every node of degree great than k must be 
in the k-cover, as omitting it alone would make the cover too large.  

Having removed all such nodes, we are left looking for a k’ cover. (Assume we had k-k’ 
nodes of degree greater than k.) Next observe than if there is a k cover for the original 
graph, we are to choose at most k’ more, and none of these nodes is of degree greater 
than k. Hence the remaining graph has at most kk’ edges, and so at most 2kk’ nodes of 
degree more than 0 (though the latter bound is easily improved). In any case we have 
drastically reduced the size of the problem. 

From the argument above we can try all possible subsets of k’ of these nodes and solve 
our problem. This would give an O(n + e+ (2kk’)1+k’) or so method, but reducing the k 
term even farther can dramatically extend the range in which the method is useful. The 
idea is to note that, for any remaining edge, at least one of the nodes incident with that 
edge must be in the k’ cover. We will build a comlete binary tree of height k’, in which 
each path corresponds to a k’ cover. We start by choosing an arbitrary edge of the 
reduced graph, each of its children is labelled with one end of this edge. The process 
continues at each child, where an arbitrary edge, neither of whose ends appears on the 
path from the root. Again each of the children of this tree node is labeled with one end of 
the selected edge. If any path in this tree, of height k’, covers all edges, we have a 
solution, otherwise there is no solution. Clearly we take at most O(kk’2k’) time, but with 
care we can get this portion to run in time O(2k’). This leads to the desired O(n+e+2k) 
method. 

With a bit more work the method can be improved even more, to about O(n+e+1.28..k), 
which effectively triples the value of k that can be accommodated in the same length of 
time. There exist implementations that can solve the problem for all graphs with a few 
billion nodes and k up to 200 or so. 
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