CS 466: Divide and Conquer Algorithms and Reduction

Steph Durocher
September 18, 2008

Today we begin a new section in course material: Divide and Conquer Algorithms and Reduction
CLR Reference:

e matrix multiplication 25.1
e Strassen’s algorithm 28.2
e divide and conquer algorithms 2.3
e Master Theorem 4.3
today:
e matrix multiplication using Strassen’s algorithm
e review of Master Theorem
next lecture:

e transitive closure

Divide and Conquer.

1. Divide the problem into subproblems.
2. Solve (Conquer) the subproblems recursively (or directly if the subproblem is small enough: base case).
3. Combine solutions to the subproblems into a solution to the original problem.

Today we analyze various divide-and-conquer algorithms for matrix multiplication.

Matrix Multiplication.

Given an s x t matrix A and a ¢t X v matrix B, return the s X u matrix C = A - B.

bir bz - by
€11 €12 -+ Ciy a1l a2 te a1t bor bap -+ boy
C21 C22 -+ Coy a1 a22 T a2t
Cs1 Cs2 tee Csu ag1 Ag2 e Ast

by b o by

Recall, that for every i € {1,...,s} and every j € {1,...,u},

t
cij = Y irbij.
k=1

We can easily implement a sequential solution:

for i =1 to s
for j =1tou
cli,jl =0
for k =1 tot
C[i,j] += A[i,k] * B[k,j]

Running time: O(stu) = ©(n?), where n = max(s,t,u).

Note, this is not a divide-and-conquer approach.

Let’s consider divide-and-conquer algorithms. For simplicity, assume s = t = v = n = 2° for some non-
negative integer i; all results we describe generalize to arbitrary s, ¢, and u.

Divide each n x n array into four arrays of size n/2 x n/2.

Ciu Ciz \ _(An Az |\ ([Bu B2
Ca1 Ca Ay Ag By By)

Ci11 = A1 Bi1 + A12Boy
Cio = A11B1s + A12Boy
Co1 = A21B11 + A22 By
Caz = A21Bi2 + A22B2
Base case: multiply two 1 x 1 matrices (i.e., two scalars).
Computing each matrix C;; requires matrix addition and subtraction and two matrix multiplications.

Therefore, computing each C;; requires 27'(n/2) + ©(n?) time.
Therefore, the total running time is

T(n) = 8T(n/2) + O(n?)
T(1) =

What is the closed-form solution solution for T'(n)?
Long method: solve using substitution and induction.
Fast method: use the Master Theorem.

Review: Master Theorem.

The Master Theorem applies to recurrence relations of the form
T(n) = aT(n/b) + f(n),

where a > 1 and b > 1.
There are three cases:

1. If f(n) € O(n'°8 2=¢) for some € > 0, then T'(n) € O(n'°8+).
2. If f(n) € ©(n'°8) then T(n) € O(n'°8 *log, n).
(n) €

3. If f(n (n'°g» +€) for some € > 0, and af(n/b) < cf(n) for some ¢ < 1 and all sufficiently large n,
then T'(n) € ©(f(n)).

Let’s use the Master Theorem, to find the running time of our recursive matrix multiplication algorithm.

T(n) = 8T(n/2) + O(n?)
T(1) =1

a=38,b=2, f(n) € OMn?).

f(n) € O(n'°8r2=€) = O(n3~°).

Therefore, Case 1 of the Master Theorem applies and T'(n) € O(n'°8 *) = O(n?).

The running time is still cubic. Can we do better with a straightforward divide and conquer algorithm?

Strassen’s Algorithm.

Define seven matrices of size n/2 x n/2, My, ..., My:

M, = (A11 + Agz) - (B11 + Ba2)
My = (A21 + Asz) - By
M3 = A1y - (Bia — Baa)
My = Az - (B21 — Bi1)
Ms = (A11 + Ai2) - Bay
Mg = (A21 — A1) - (B11 + Bi2)
My = (A12 — Agz) - (Ba1 + Baa)

The four n/2 x n/2 submatrices of C' can be defined in terms of My, ..., M7:

Ci11 = My + My — Ms + My
Ci2 = M3+ M;5
Cy1 = My + My
Ca2 = My — Ms + M3 + Mg

Let’s verify one of these (you can check the remaining three):

Ci2 = M3 + M;5
= [A11 - (Bi2 — Ba2)] + [(A11 + A12) - Bog]
= A11B12 — A11 B + A11Boy + A12Bao
= A11B12 + A12Bas

What is the running time?

Computing each matrix M; requires matrix addition and subtraction but only one matrix multiplication.
Therefore, computing each M; requires T'(n/2) + O(n?) time.

Therefore, the total running time is

T(n) = 7T (n/2) + ©(n?)
T(1) =1

Again, we can use the Master Theorem to solve the recurrence.

a=17b=2, f(n) € O(n?)

f(n) c O(nlogh a—e) ~ O(n2‘81_6).

Therefore, Case 1 of the Master Theorem applies and T'(n) € ©(n'°% %) ~ O(n28!).

Faster matrix multiplication algorithms exist, but these are more complicated. The current best algorithm
has running time approximately O(n?376). The best lower bound is ©(n?) (i.e., the number of elements in
an n X n matrix).

