
CS 466: Divide and Conquer Algorithms and Reduction

Steph Durocher

September 18, 2008

Today we begin a new section in course material: Divide and Conquer Algorithms and Reduction
CLR Reference:

• matrix multiplication 25.1

• Strassen’s algorithm 28.2

• divide and conquer algorithms 2.3

• Master Theorem 4.3

today:

• matrix multiplication using Strassen’s algorithm

• review of Master Theorem

next lecture:

• transitive closure

Divide and Conquer.

1. Divide the problem into subproblems.

2. Solve (Conquer) the subproblems recursively (or directly if the subproblem is small enough: base case).

3. Combine solutions to the subproblems into a solution to the original problem.

Today we analyze various divide-and-conquer algorithms for matrix multiplication.

Matrix Multiplication.
Given an s× t matrix A and a t× u matrix B, return the s× u matrix C = A ·B.


c11 c12 · · · c1u

c21 c22 · · · c2u

...
...

. . .
...

cs1 cs2 · · · csu

 =


a11 a12 · · · a1t

a21 a22 · · · a2t

...
...

. . .
...

as1 as2 · · · ast

 ·



b11 b12 · · · b1u

b21 b22 · · · b2u

...
...

. . .
...

bt1 bt2 · · · btu


Recall, that for every i ∈ {1, . . . , s} and every j ∈ {1, . . . , u},

cij =
t∑

k=1

aikbkj .

We can easily implement a sequential solution:

1



for i = 1 to s
for j = 1 to u

C[i,j] = 0
for k = 1 to t

C[i,j] += A[i,k] * B[k,j]

Running time: Θ(stu) = Θ(n3), where n = max(s, t, u).
Note, this is not a divide-and-conquer approach.
Let’s consider divide-and-conquer algorithms. For simplicity, assume s = t = u = n = 2i for some non-
negative integer i; all results we describe generalize to arbitrary s, t, and u.
Divide each n× n array into four arrays of size n/2× n/2.(

C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)
.

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

Base case: multiply two 1× 1 matrices (i.e., two scalars).
Computing each matrix Cij requires matrix addition and subtraction and two matrix multiplications.
Therefore, computing each Cij requires 2T (n/2) + Θ(n2) time.
Therefore, the total running time is

T (n) = 8T (n/2) + Θ(n2)
T (1) = 1

What is the closed-form solution solution for T (n)?
Long method: solve using substitution and induction.
Fast method: use the Master Theorem.

Review: Master Theorem.
The Master Theorem applies to recurrence relations of the form

T (n) = aT (n/b) + f(n),

where a ≥ 1 and b > 1.
There are three cases:

1. If f(n) ∈ O(nlogb a−ε) for some ε > 0, then T (n) ∈ Θ(nlogb a).

2. If f(n) ∈ Θ(nlogb a), then T (n) ∈ Θ(nlogb a log2 n).

3. If f(n) ∈ Ω(nlogb a+ε) for some ε > 0, and af(n/b) ≤ cf(n) for some c < 1 and all sufficiently large n,
then T (n) ∈ Θ(f(n)).

Let’s use the Master Theorem, to find the running time of our recursive matrix multiplication algorithm.

T (n) = 8T (n/2) + Θ(n2)
T (1) = 1

2



a = 8, b = 2, f(n) ∈ Θ(n2).
f(n) ∈ O(nlogb a−ε) = O(n3−ε).
Therefore, Case 1 of the Master Theorem applies and T (n) ∈ Θ(nlogb a) = Θ(n3).
The running time is still cubic. Can we do better with a straightforward divide and conquer algorithm?

Strassen’s Algorithm.
Define seven matrices of size n/2× n/2, M1, . . . ,M7:

M1 = (A11 + A22) · (B11 + B22)
M2 = (A21 + A22) ·B11

M3 = A11 · (B12 −B22)
M4 = A22 · (B21 −B11)
M5 = (A11 + A12) ·B22

M6 = (A21 −A11) · (B11 + B12)
M7 = (A12 −A22) · (B21 + B22)

The four n/2× n/2 submatrices of C can be defined in terms of M1, . . . ,M7:

C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6

Let’s verify one of these (you can check the remaining three):

C12 = M3 + M5

= [A11 · (B12 −B22)] + [(A11 + A12) ·B22]
= A11B12 −A11B22 + A11B22 + A12B22

= A11B12 + A12B22

What is the running time?
Computing each matrix Mi requires matrix addition and subtraction but only one matrix multiplication.
Therefore, computing each Mi requires T (n/2) + Θ(n2) time.
Therefore, the total running time is

T (n) = 7T (n/2) + Θ(n2)
T (1) = 1

Again, we can use the Master Theorem to solve the recurrence.
a = 7, b = 2, f(n) ∈ Θ(n2)
f(n) ∈ O(nlogb a−ε) ≈ O(n2.81−ε).
Therefore, Case 1 of the Master Theorem applies and T (n) ∈ Θ(nlogb a) ≈ Θ(n2.81).
Faster matrix multiplication algorithms exist, but these are more complicated. The current best algorithm
has running time approximately O(n2.376). The best lower bound is Ω(n2) (i.e., the number of elements in
an n× n matrix).

3


