CS 466: Divide and Conquer Algorithms and Reduction

Steph Durocher

September 18, 2008

Today we begin a new section in course material: Divide and Conquer Algorithms and Reduction CLR Reference:

- matrix multiplication 25.1
- Strassen's algorithm 28.2
- divide and conquer algorithms 2.3
- Master Theorem 4.3

today:

- matrix multiplication using Strassen's algorithm
- review of Master Theorem

next lecture:

• transitive closure

Divide and Conquer.

- 1. <u>Divide</u> the problem into subproblems.
- 2. <u>Solve</u> (Conquer) the subproblems recursively (or directly if the subproblem is small enough: base case).
- 3. Combine solutions to the subproblems into a solution to the original problem.

Today we analyze various divide-and-conquer algorithms for matrix multiplication.

Matrix Multiplication.

Given an $s \times t$ matrix A and a $t \times u$ matrix B, return the $s \times u$ matrix $C = A \cdot B$.

$$\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1u} \\ c_{21} & c_{22} & \cdots & c_{2u} \\ \vdots & \vdots & \ddots & \vdots \\ c_{s1} & c_{s2} & \cdots & c_{su} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1t} \\ a_{21} & a_{22} & \cdots & a_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{st} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1u} \\ b_{21} & b_{22} & \cdots & b_{2u} \\ \vdots & \vdots & \ddots & \vdots \\ b_{t1} & b_{t2} & \cdots & b_{tu} \end{pmatrix}$$

Recall, that for every $i \in \{1, \dots, s\}$ and every $j \in \{1, \dots, u\}$,

$$c_{ij} = \sum_{k=1}^{t} a_{ik} b_{kj}.$$

We can easily implement a sequential solution:

Running time: $\Theta(stu) = \Theta(n^3)$, where $n = \max(s, t, u)$.

Note, this is not a divide-and-conquer approach.

Let's consider divide-and-conquer algorithms. For simplicity, assume $s = t = u = n = 2^i$ for some non-negative integer i; all results we describe generalize to arbitrary s, t, and u.

Divide each $n \times n$ array into four arrays of size $n/2 \times n/2$.

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

$$C_{12} = A_{11}B_{12} + A_{12}B_{22}$$

$$C_{21} = A_{21}B_{11} + A_{22}B_{21}$$

$$C_{22} = A_{21}B_{12} + A_{22}B_{22}$$

Base case: multiply two 1×1 matrices (i.e., two scalars).

Computing each matrix C_{ij} requires matrix addition and subtraction and two matrix multiplications.

Therefore, computing each C_{ij} requires $2T(n/2) + \Theta(n^2)$ time.

Therefore, the total running time is

$$T(n) = 8T(n/2) + \Theta(n^2)$$

$$T(1) = 1$$

What is the closed-form solution solution for T(n)?

Long method: solve using substitution and induction.

Fast method: use the Master Theorem.

Review: Master Theorem.

The Master Theorem applies to recurrence relations of the form

$$T(n) = aT(n/b) + f(n),$$

where $a \ge 1$ and b > 1.

There are three cases:

- 1. If $f(n) \in O(n^{\log_b a \epsilon})$ for some $\epsilon > 0$, then $T(n) \in \Theta(n^{\log_b a})$.
- 2. If $f(n) \in \Theta(n^{\log_b a})$, then $T(n) \in \Theta(n^{\log_b a} \log_2 n)$.
- 3. If $f(n) \in \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$, and $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then $T(n) \in \Theta(f(n))$.

Let's use the Master Theorem, to find the running time of our recursive matrix multiplication algorithm.

$$T(n) = 8T(n/2) + \Theta(n^2)$$

$$T(1) = 1$$

$$a = 8, b = 2, f(n) \in \Theta(n^2).$$

 $f(n) \in O(n^{\log_b a - \epsilon}) = O(n^{3 - \epsilon}).$

Therefore, Case 1 of the Master Theorem applies and $T(n) \in \Theta(n^{\log_b a}) = \Theta(n^3)$.

The running time is still cubic. Can we do better with a straightforward divide and conquer algorithm?

Strassen's Algorithm.

Define seven matrices of size $n/2 \times n/2$, M_1, \ldots, M_7 :

$$M_{1} = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$M_{2} = (A_{21} + A_{22}) \cdot B_{11}$$

$$M_{3} = A_{11} \cdot (B_{12} - B_{22})$$

$$M_{4} = A_{22} \cdot (B_{21} - B_{11})$$

$$M_{5} = (A_{11} + A_{12}) \cdot B_{22}$$

$$M_{6} = (A_{21} - A_{11}) \cdot (B_{11} + B_{12})$$

$$M_{7} = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

The four $n/2 \times n/2$ submatrices of C can be defined in terms of M_1, \ldots, M_7 :

$$C_{11} = M_1 + M_4 - M_5 + M_7$$

$$C_{12} = M_3 + M_5$$

$$C_{21} = M_2 + M_4$$

$$C_{22} = M_1 - M_2 + M_3 + M_6$$

Let's verify one of these (you can check the remaining three):

$$C_{12} = M_3 + M_5$$

$$= [A_{11} \cdot (B_{12} - B_{22})] + [(A_{11} + A_{12}) \cdot B_{22}]$$

$$= A_{11}B_{12} - A_{11}B_{22} + A_{11}B_{22} + A_{12}B_{22}$$

$$= A_{11}B_{12} + A_{12}B_{22}$$

What is the running time?

Computing each matrix M_i requires matrix addition and subtraction but only one matrix multiplication.

Therefore, computing each M_i requires $T(n/2) + \Theta(n^2)$ time.

Therefore, the total running time is

$$T(n) = 7T(n/2) + \Theta(n^2)$$

$$T(1) = 1$$

Again, we can use the Master Theorem to solve the recurrence.

$$a = 7, b = 2, f(n) \in \Theta(n^2)$$

$$f(n) \in O(n^{\log_b a - \epsilon}) \approx O(n^{2.81 - \epsilon}).$$

Therefore, Case 1 of the Master Theorem applies and $T(n) \in \Theta(n^{\log_b a}) \approx \Theta(n^{2.81})$.

Faster matrix multiplication algorithms exist, but these are more complicated. The current best algorithm has running time approximately $O(n^{2.376})$. The best lower bound is $\Omega(n^2)$ (i.e., the number of elements in an $n \times n$ matrix).