(C5466/666, Fall 2009: Assignment 1

Out: September 21, Due: October 7, 5pm

1. Simulating a queue with two stacks: You may be familiar with the technique
of simulating a queue with two stacks as follows. Keep all elements on one stack.
Whenever you are asked to enqueue, add the element at the top of the first stack (=
end of the queue). Whenever you are asked to dequeue, temporarily pop everything
from the first stack and push it into the second stack, then return the top element of
the second stack, and then pop everything off the second stack and push it onto the
first.

This implementation takes ©(n) worst-case time for a de-queue, and the amortized
time is no better, since n de-queue operations will take O(n?) time.

Give a different way to simulate a queue with two stacks such that the amortized cost
of each Enqueue and Dequeue is O(1). You should only use O(1) memory other than
for the two stacks.

2. Amortized analysis of binary min-heaps: Recall that in the ordinary binary min-
heap structure, Insert is done by inserting the element as the last element of the heap
and bubbling up, while ExtractMin is done by removing the root, moving the last
element in its place, and bubbling it down. If the binary heap has n elements, then
both Insert and ExtractMin take O(logn) actual time.

(a) Give a potential function ® such that the amortized cost of ExtractMin is O(1),
but the amortized cost of Insert is still O(logn). Show that it works.

(b) Can you find a potential function ® such that the amortized cost of Insert is O(1),
but the amortized cost of ExtractMin is still O(logn)? If yes, give it and show
that it works. If no, argue where the difficulty lies.

3. Euclidean Minimum Spanning Tree: The Euclidean Minimum Spanning Tree
problem is the following: Given n points py,...,p, in the plane, define the complete
graph K, where edge (i,7) has weight equal to the Euclidean distance between p; and
pj. Then find a minimum spanning tree in the usual sense: find a set T of n — 1 edges
that is connected (hence a tree.)

Show that any algorithm to solve the Euclidean Minimum Spanning tree must have
time complexity (nlogn), under some reasonable assumptions. (These assumptions
will not be given precisely here; figuring out what assumptions you need and stating
them precisely are part of this assignment. )



4. Orthogonally convex hull: Let () be a set of n points in the plane. We say that point
(x,y) dominates point (a',y’) if # > 2’ and y > ¢'. A point in @ that is dominated by
no other points in ) is said to be mazimal. Note that ) may contain many maximal
points. The orthogonally conver NE-hull consists of the sequence of maximal points of
@), sorted by increasing z-coordinate.

(a) Describe an O(nlogn) worst-case time algorithm to compute the orthogonally

convex NE-hull.

(b) Describe an O(nh) worst-case time algorithm to compute the orthogonally convex

NE-hull, where h is the size of that hull.

(c¢) Can the two algorithms be combined to give an O(n log h) algorithm for computing
the orthogonally convex NE-hull? If yes, give it. If no, argue where the difficulty
lies.

Remarks (for all assignment questions in this course):

¢ You may make assumptions on your input if it simplifies an argument. This may lead
to some deduction (e.g., in Question 4, assuming that all z-coordinates are distinct will
not give full credit), but usually not very much. Typical assumptions to make are: n
is a power of 2, all input numbers are distinct, all edge-weights are distinct, .... Make
sure you state your assumption clearly.

e If you are asked to show a bound (e.g. on the running time), and you can’t do it,
then partial credit can often be obtained if you show a weaker bound. For example, in
Question 4(a) and (b), any bound less than O(n?) should get some partial credit.



