(C5466/666, Fall 2009: Assignment 3

Out: October 19, Due: November 4, 5pm

1. Minimum spanning trees in changing graphs: Given a graph G and an MST T'.

(a) Suppose we decrease the weight of one e in T. How quickly can you compute the

MST T" of the resulting graph G'?

(b) Suppose we decrease the weight of one edge e not in T. How quickly can you
compute the MST T of the resulting graph G'?7

(c¢) Suppose we add a new vertex v with an arbitrary number of incident edges. How
quickly can you compute the MST T of the resulting graph G'7

You may use randomized Las Vegas algorithms if they have a faster expected run-time.

2. Union/Find with lists and weighted union heuristic: Recall that one option for
Union/Find was to keep lists with head-references, and during Union(|A|, |B|) change
the head-references of the not-longer list. We showed in class that m unions will take
at most O(nlogn) time.

Professor Dumb thinks she can prove something better with potential functions. As-
sume that Union(|A|, |B|) takes time 14+ min{|A|, |B|} (i.e., ignore constant overhead.)
Furthermore, assume that initially (at time 0) the data structure contains exactly one
element. Define the following potential function:

o(i) = log (r[xsnli:e(xg ’

where n is the number of elements stored at time 7, the product is over all elements x
stored at time ¢, and size(x) denotes the size of the list containing x at time 1.

(a) Show that with this potential function, Find and Union both take O(1) amortized
time.

(b) Since one can easily show that ®(0) = 0 and ®(z) > 0 (you need not prove this),
why doesn’t this show that Union-Find can be implemented in O(1) amortized
time for all operations?



3. Maintaining lists while splitting: Show how to maintain a set of doubly-linked
lists that can be split. Initially, the set contains just one list with n elements in it.
Two operations can be applied, in arbitrary order:

e Find(x): This returns a unique identifier of the list that currently contains x.

e Split(¢, x): This splits list £ into two lists, by splitting after .

For both operations, * knows where it is in the list. Explain how to implement this
data structure such that any Find can be done in O(1) time, and the total time for all
Split operations is O(nlogn) time.

4. Union/Find with Remove: Consider the Union/Find problem, but with an addi-
tional operation Remove(x) that removes element x from its set and places it in a set
by itself. You may assume that each element has a reference to where it is stored in
the data structure, so Remove(x) need not find the element, only remove it.

Show how to modiy the data structure such that a sequence of m Union, Find, and
Remove operations on a set of n elements takes O(n 4+ a(n)m) time.



