CS466/666, Fall 2009: Assignment 5

Out: November 16, Due: December 2, 5pm

- 1. Max- ℓ -Cut. Given an undirected graph G = (V, E) and an integer ℓ , the Max- ℓ -cut problem asks to find a partition of V into sets S_1, \ldots, S_ℓ such that the number of edges in the cut (i.e., connecting vertices in two different sets) is maximized. cut (i.e., connect vertices in two different sets) is maximized.
 - (a) A simple randomized algorithm would assign each vertex to one of S_1, \ldots, S_ℓ with equal probability. What is the expected number of edges in the ℓ -Cut achieved with this algorithm?
 - (b) Explain how to de-randomize the algorithm of part (a) with the method of conditional expectation. Then give a simple interpretation of the resulting algorithm as a greedy-algorithm.
- 2. NAE-6SAT: NAE-6SAT is the same as NAE-3SAT, except that every clause has exactly 6 distinct literals. NAE-6SAT is still NP-hard (you need not prove this.)

But it is polynomial in a special case. Assume that it is known that there exists an assignment R to the variables such that every clause has exactly 3 literals that are TRUE. (You do not know what R is, only that it exists.) Show that then there exists a Las Vegas algorithm that finds a solution to this instance of NAE-6SAT in polynomial expected time.

(Hint: Imitate the randomized algorithm for 2-SAT. Note that you need not find R; any solution to NAE-6SAT is good enough.)

- 3. Nonograms: The following is a very specialized case of a nonogram. Assume you are given h_1, \ldots, h_m and v_1, \ldots, v_n with $\sum_{i=1}^m h_i = \sum_{j=1}^n v_j$. You are also given two functions $\alpha : \{1, \ldots, m\} \to \{1, \ldots, n\}$ and $\beta : \{1, \ldots, n\} \to \{1, \ldots, m\}$.
 - (a) You want to find a 0/1-matrix $(x_{i,j})$, where $i=1,\ldots,m$ and $j=1,\ldots,n$ that satisfies the following:
 - $\sum_{j=1}^{n} x_{i,j} = h_i$ for all i = 1, ..., m. $\sum_{i=1}^{m} x_{i,j} = v_j$ for all j = 1, ..., n.

 - For any i = 1, ..., m, the 1s in row i are consecutive.
 - For any j = 1, ..., n, the 1s in column j are consecutive.
 - For any $i = 1, ..., m, x_{i,\alpha(i)} = 1.$ (*)
 - For any $j = 1, ..., n, x_{\beta(j),j} = 1.$ (**)

Show how to find such a matrix in O(mn) time. Hint: 2SAT.

- (b) Show how to do this if you don't have function $\beta(.)$ (and condition (**) is dropped.) The goal is still O(mn) run-time, but slower methods will receive lots of partial credit.
- (c) (Bonus) Show how to this is you have neither $\alpha(.)$ nor $\beta(.)$ (and conditions (*) and (**) are dropped), but the set of cells with $x_{i,j} = 1$ is required to be connected. The run-time should still be polynomial, but not particularly fast.
- 4. k-Vertex-Cover: A different way to phrase the Vertex Cover problem is to ask for the maximum number of edges that can be covered with a set of k vertices. Thus, given a graph and k, we want to find a set $C \subset V$ of k vertices such that as many edges as possible have an endpoint in C.

Give a randomized algorithm that finds a set $C \subset V$ such that the expected size of C is at most k and the expected number of covered edges is at least $\frac{3}{4}OPT$, where OPT is the maximum number of edges that can be covered with k vertices. (Hint: Randomized rounding. You will need to formulate a suitable IP first.)