

CS 466/666 Notes
More Coping with NP- Hardness and Completeness

We will briefly discuss three approaches to handling NP-hard optimization problems, in addition to
approximations with guaranteed bounds. There are

i) randomization (see section 35.4)
ii) derandomization

and
iii) parameterization (often we face NP-hard problems with two parameters, it may be possible to

solve them in time linear in one, though exponential in the other).

Randomization
First consider randomization and the idea of a randomized ρ(n) approximation algorithm that has an
expected approximation ration of ρ(n) (or better) for all inputs. A key point here is that the method
should be expected to work well, on any input. We illustrate the idea by considering a very simple
example: Max-3-CNF satisfiability. That is to satisfy the maximum number of clauses in a 3-CNF
expression (we take from that that each clause contains three distinct literals … x and ⌐x are distinct,
but of course having them both in a clause simple makes it true).
A natural approach would be to choose the literal that occurs most often and set it to true. Another
idea would be to find maximum difference in number of occurrences of and over all values of i; then
make a “wise” assignment. These ideas tend to work well, but bad cases can be constructed. A
reasonable baseline for further improvements can be constructed by making a random assignment to
each variable, this leads to an 8/7 approximation. The result also tells us 7/8 of the clauses in any 3-
CNF expression can be satisfied.
Proof:
Let Yi= 1 if {clause i is satisfied} else 0
There are 3 literals in clause i, so a random assignment sets the clause to true, with probability at
least 7/8 (if a variable and its negation both occur in the same clause, the clause must be true). So if
Y is the number of the m clauses satisfied:
 E[Y] = E[Σ Yi] = Σ Yi = 7m/8
Given this baseline one can try modifications in the hope of making improvements. Remember that
on any given input, what you care about is getting a good answer in the time you have available.

Derandomization
Sometimes we have a good technique that involves randomization and we would like to remove the
probabilistic aspects of its behavior. An example of this might be moving from standard binary
search trees which work well on a random ordering of insertions to some sort of balanced trees such
as AVL trees that have a guarantee of good behaviour. The 3-Sat example above gives us to try a
simple scheme.
Choose and arbitrary variable, call it a. We will assign a to be true or false, whichever is most
effective for our purpose. We might say “whichever makes the most clauses true”, that is fine when
we start but needs a bit of refinement. Note that making an assignment of a makes some clauses true
while reducing the number of “open variables” in other clauses, at some stage as the process
continues such an assignment will make some clauses false, while hopefully making more of them
true. So we go back to thoughts of the probabilistic approach. A random assignment makes a clause
with 3 literals true with probability 7/8. If we make a random assignment of a variable, with either

that variable or its negation as literals in a clause, the clause is either made true or reduced to a clause
with 2 literals … with equal probability. So the clause becomes true with probability 1 or with
probability 3/4 (the latter case, if our literal is false). Continuing the idea and moving from
probabilities to “weights”, we say:

• A clause already made true by assignments has weight 1.
• A clause with 3 literals has weight 7/8, making a literal true increases this by 1/8, making it

false decreases by 1/8.
• A clause with 2 literals has weight ¾, making a literal true increases this by 1/4, making it

false decreases by1/4.
• A clause with 1 literal has weight 1/2, making a literal true increases this by 1/2, making it

false decreases by 1/2.
• A clause with no literals left (i.e. all have been made false) has weight 0, and there is nothing

we can do.

This means that if making an assignment of a increases (or decreases) the sum of all clause weights
by δ, making the reverse assignment of a would change the weight sum by the same amount in the
opposite direction. So we make a either true or false, whichever makes the sum of all weights greater,
this means the weight sum never decreases when a variable is assigned a value. So when all variables
have been assigned, at least 7/8 of them are true.
Observe that having first linked clauses containing a common literal in a doubly linked list, the entire
process can be done in linear time.
Curiously, although this means we can satisfy 7/8 of the clauses in any 3-Sat problem, Håstad has
shown that getting a better ratio relative to the optimal assignment of any expression, is NP-Hard.

Parameterized Complexity
Many NP-complete decision problems, and NP-hard search problems, are expressed in terms of more
than one parameter. For example, we could be asked whether an n node graph has a clique of size k.
Although the problem is NP-complete if k is arbitrary, it is obvious the problem can be solved in
O(nk) time by brute force. There are also cases in which O(nc2k) or even O(nc+ 2k) solutions exist.
This parameterized complexity point of view can be very useful and lead to a guarantee of an exact
solution in time polynomial (perhaps even linear) in the size of the input plus an exponential term in
a much smaller parameter. Formally we say a problem is fixed parameter tractable if there exists a
solution that runs in time O(f(k) nc) where n is the input length, k is a parameter supplied in the
problem and c is a constant.
It quickly follows that if an optimization problem in NP has a fully polynomial time approximation
scheme, then it is a fixed parameter tractable. (Simply get a (1+1/k) approximation, this guarantees
the error so small that it must be the optimal solution)
We will look at only one example, the vertex cover problem, but see an approach that has been
applied in many cases. So, we are given an n node, e edge graph and asked for a k-vertex cover.
The first phase (called kernelization) is simply a matter of scanning the entire graph and reducing
the problem to one of size that depends only on k.
So, for the problem at hand, we observe that for any given node, either it or all its neighbours must be
in a vertex cover. Hence, every node of degree greater than k must be in the k-cover, as omitting it
alone would make the cover too large.
Having removed all such nodes, we are left looking for a k’ cover. (Assume we had k-k’ nodes of
degree greater than k.) Next observe than if there is a k cover for the original graph, we are to choose
at most k’ more, and none of these nodes is of degree greater than k. Hence the remaining graph has

at most kk’ edges, and so at most 2kk’ nodes of degree more than 0 (though the latter bound is easily
improved). In any case we have drastically reduced the size of the problem.
From the argument above we can try all possible subsets of k’ of these nodes and solve our problem.
This would give an O(n + e+ (2kk’)1+k’) or so method, but reducing the k term even farther can
dramatically extend the range in which the method is useful.
The idea is to note that, for any remaining edge, at least one of the nodes incident with that edge must
be in the k’ cover. We will build a complete binary tree of height k’, in which each path corresponds
to a k’ cover. We start by choosing an arbitrary edge of the reduced graph, each of its children is
labelled with one end of this edge. The process continues at each child, where an arbitrary edge,
neither of whose ends appears on the path from the root. Again each of the children of this tree node
is labeled with one end of the selected edge. If any path in this tree, of height k’, covers all edges, we
have a solution, otherwise there is no solution. Clearly we take at most O(kk’2k’) time, but with care
we can get this portion to run in time O(2k’). This leads to the desired O(n+e+2k) method.
With a bit more work the method can be improved even more, to about O(n+e+1.28..k), which
effectively triples the value of k that can be accommodated in the same length of time. There exist
implementations that can solve the problem for all graphs with a few billion nodes and k up to 200 or
so.

	More Coping with NP- Hardness and Completeness

